

QUBAHAN ACADEMIC JOURNAL

VOL. 5, NO. 1, March 2025

https://doi.org/10.48161/qaj.v5n1a1522

824

VOLUME 5, No 1, 2025

Efficacy of Blended Learner-Centric Approaches in Computer

Programming Education

Admaja Dwi Herlambang 1*

1 Information Technology Education Program, Computer Science Faculty, Universitas Brawijaya, Malang 65145, East

Java, Indonesia.

* Corresponding author: herlambang@ub.ac.id.

ABSTRACT: This research evaluates the effectiveness of blended learner-centric approaches (BLCA)

to programming education for several student cohorts in a multitude of disciplines. In a mixed-method

design, 427 undergraduate students participated in a quasi-experimental study comparing traditional

instruction to a BLCA. Quantitative data were analyzed using hierarchical linear modelling (HLM),

while qualitative data were subjected to thematic analysis. The quantitative results indicated a

statistically significant difference in computer programming skill improvement between the control

group (ΔM=9.40, SD=4.80) and experimental group (ΔM=18.70, SD=5.20), coupled with a large effect

size (Cohen’s d=1.86, p<.001). This highlights the efficacy of BLCA in enriching problem-solving

capabilities and cross-field transferability. Quantitative results revealed a statistically significant

difference in programming proficiency gains between the experimental (ΔM=18.70, SD=5.20) and

control groups (ΔM=9.40, SD=4.80), with a large effect size (Cohen’s d=1.86, p<.001). This underscores

BLCA’s superiority in fostering interdisciplinary relevance and problem-solving skills. The effect size,

Cohen’s d = 1.86, indicates huge practical significance. Qualitative findings included increased

engagement, improved problem-solving ability, and increased perceived relevance of programming to

primary fields of study. On the negative side, the challenges to time management and integration of

programming concepts with domain-specific knowledge were raised. It provides the refined models of

blended learning for programming education, along with pedagogical implications of teaching

programming to non-computer science majors.

Keywords: blended learner-centric, computer programming, programming education, programming proficiencies,

multidisciplinary programming.

I. INTRODUCTION
Recently, programming literacy has also become imperative in many other fields of study in higher

education [1, 2, 3]. Considering that technology has permeated every field, the concepts of programming too
should be inculcated across most curricula other than traditional computer science [4, 5]. This paradigm shift
has had its share of opportunities and challenges for people teaching programming over time within diverse
classes. Programming skills are nowadays taught not only by computer science departments but also by
engineering and natural science along with social studies programs such as business administration and
psychology [6]. In fact, the latter has recently become the default in-class teaching activity on campus. A
vision is clear, computational thinking is becoming one of the essential skills in all disciplines for solving
problems and being creative [7, 8]. This research represents significant strides in programming education,
from ‘syntax teaching’ to a ‘concept first, practice-oriented’ approach. Indeed, the change has equally proved

https://doi.org/10.48161/qaj.v5n1a1522

QUBAHAN ACADEMIC JOURNAL

VOL. 5, NO. 1, March 2025

https://doi.org/10.48161/qaj.v5n1a1522

825

VOLUME 5, No 1, 2025

that the opposite is true: it is not easy to teach programming to several diverse groups. The diversity in
students’ backgrounds, experiences, and motivations makes teaching difficult [4, 9]. Students from other than
computing disciplines in programming courses also bring with them their peculiar mathematics skills,
reasoning, and technical capabilities. It gets very tricky for a fresher to bind all the concepts of programming
with syntax, especially for non-computer science students. Programming constructs are usually abstract and
need some specific syntax, which loads students’ cognitive capacity and hurts motivation [10]. The primary
problem addressed is the cognitive overload and disengagement faced by non-CS students in traditional
programming courses, exacerbated by insufficient alignment between programming concepts and
disciplinary contexts. This results in increased dropout rates in introductory programming classes, poor
learning outcomes, and there’s a need for more innovative teaching methods that match the students’
diversity. Listed are the challenges called upon; the need to address them introduces a study recently to
introduce blended learner-centric approach (BLCA) into programming education. BLCA is a model that
combines digital learning and learning in person; hence, it has a highly scalable framework for dynamic,
learner-driven experiences [11].

The learner-centric approach adjusts resources and activities to the individual student and his or her
interests [12, 13, 14]. Such a personalized approach to learning has been proposed to overcome the cognitive
load problems of programming education and to make it relevant for a diverse set of students. The BLCA
will involve the flipped classroom, project-based learning, and adaptive online platforms. All these looks at
optimizing instructional time by saving the content delivery for at-home practice at one’s own pace while
prioritizing real interaction and active learning on campus. This would enable the incorporation of domain
projects into students’ fields, raising relevance and, therefore, levels of engagement. It also develops real-
world applications, placing programming in context. Recent studies (2018–2023) on blended learning
predominantly focus on computer science majors, leaving a critical gap in understanding its efficacy for
heterogeneous cohorts integrating domain-specific projects. This study addresses this by evaluating BLCA’s
adaptability to non-CS disciplines. According to them, success in this new blended MOOC environment will
depend upon investigations into the relationship between instructional modalities, learner demographics,
and disciplinary settings [15, 16]. This study aims to (1) develop a pedagogical framework for
interdisciplinary programming instruction via BLCA, (2) evaluate discipline-specific project integration’s
impact on engagement, and (3) propose strategies for cognitive load reduction in diverse cohorts. It,
therefore, attempts to reach how these combined, learner-centric approaches improve programming skills in
a diverse student population; how project assignments, related to discipline, impact the engagement and
satisfaction of students; and explore learners’ perceptions of their experiences within the new model.

II. LITERATURE REVIEW
Constructivism also stands very strongly at the root of learner-centric education and considers learners

very active in building their knowledge of the world. According to constructivism, learning is considered an
active construction process, not a knowledge acquisition process [17, 18, 19]. This contradicts the traditional
view of knowledge transmission yet heightens how learners derive meaning from experience. Constructivist
principles in programming education invite instructors to establish an investigation, experimentation, and
problem-solving environment. BLCA integrates cognitive load theory by chunking syntax practice into
adaptive modules and self-determination theory by allowing students to select domain-specific projects,
enhancing autonomy and relevance. The students build a view of programming themselves based on direct
experience and reflection [20, 21, 22]. The constructivist theory of programming education engendered
notable changes in teaching strategies towards more active modes of learning and engagement by students.
Probably the most well-known pedagogic model is that of Project-Based Learning (PjBL) rooted in the
constructivist approach [23]. Working within this framework, students are challenged with real-life problems
necessitating the use of their programming skills in developing solutions, as revealed in several research
studies [24, 25, 23]. Generally, PjBL in programming courses assumes collaboration in teamwork regarding
software projects while developing the student’s technical capabilities for critical thinking and problem-
solving.

https://doi.org/10.48161/qaj.v5n1a1522

QUBAHAN ACADEMIC JOURNAL

VOL. 5, NO. 1, March 2025

https://doi.org/10.48161/qaj.v5n1a1522

826

VOLUME 5, No 1, 2025

In a nutshell, self-directed learning is essentially based on constructivist principles-project-based
learning, with the student of legal age taking responsibility for one’s learning processes [26, 27]. Self-directed
learning involves a person’s taking responsibility for their learning-defined by Knowles as diagnosing
learning needs, establishing goals, identifying resources, choosing strategies, and evaluating learning [28,
29]. Applying the principles of self-directed learning in programming education allows learners to explore
concepts in self-determined ways at their own pace and in a way appropriate to their learning style and
interests. Similarly, blended learning models in higher education should be able to foster these learner-
centric methods. In such fields of study, blended learning has dominated for quite a significant number,
including a mix of on-campus and online experiences. It merges the very best features of the traditional face-
to-face learning methodology with a number of advantages pertaining only to the online learning world,
such as access, personalization, and digital resources [30, 31]. Recent studies verify that hybrid educational
models that combine adaptive online platforms boost engagement and learning process related to
programming curricula, particularly for non-computer science majored students. Recent studies verify that
hybrid educational models that combine adaptive online platforms boost engagement and learning process
related to programming curricula, particularly for non-computer science majored students [31, 32].
Compared to traditional approaches, the blended learning approach in STEM subjects has been reported to
bring better academic performance [33].

Blended learning applications, very popular today, are not that easy in programming education. Some
specific methodologies have been developed to respond to the opportunities and challenges brought in by
students not majoring in Computer Science. Traditional methodologies usually work for introductory
programming classes where students have diverse mathematical and logical skills. These courses are about
basic programming concepts and problem-solving, not advanced software development techniques [34, 13].
Their weaknesses are failure to engage students, failure to meet diverse needs, and failure to see the relevance
of programming in other fields. For such issues, interdisciplinary approaches to programming training
remain indispensable. They introduce the discipline of programming as related to students’ major fields by
demonstrating how these coding skills solve particular problems in the latter major fields [35, 2, 36].
Examples may be taken from biology, economics, or digital humanities; programming may be illustrated as
used for data analysis, modeling, or creative presentation. These cognitive load issues are also relevant to
programming training outside of computer science. Programming involves syntax understanding and
carrying out processes of logical reasoning while solving problems. To the novice, especially those who have
never used computers, this may overload and slow down the learning and retention process [37, 10]. The
solution for such a challenge is a visual programming language, scaffolded learning, or even just worked
examples, each minimizing cognitive load so that the core conceptual understanding is what the learner
focuses on.

III. METHOD
A mixed-method design evaluated BLCA programming education effectiveness across diverse student

groups [38]. The quasi-experimental pre-test and post-test design were used because the true randomization
of participants would have created an ethical problem [39]. While the sample included diverse disciplines
(Science: 26.5%, Engineering: 28.3%), STEM fields constituted 54.8% of participants. Weighted regression
confirmed no significant bias, but findings may overestimate BLCA efficacy for non-STEM cohorts. Statistical
power calculations (0.80) and anticipated effect size informed the sample size determination [40]. The
intervention contrasted traditional programming instruction with a BLCA. Control groups received
conventional lecture-based teaching and standardized assignments, while experimental groups experienced
personalized learning paths combining face-to-face instruction with online components. Control groups
attended 4-hour weekly lectures that featured identical syntax drills, whereas experimental groups enrolled
in blended modules that included their respective field-specific projects. Assessment instruments combined
quantitative and qualitative measures. Personalized paths were generated via pre-course diagnostic
assessments (syntax, logic, math skills) and adaptive algorithms adjusting content difficulty based on weekly
performance metrics. Pre- and post-intervention programming assessments measured technical proficiency

https://doi.org/10.48161/qaj.v5n1a1522

QUBAHAN ACADEMIC JOURNAL

VOL. 5, NO. 1, March 2025

https://doi.org/10.48161/qaj.v5n1a1522

827

VOLUME 5, No 1, 2025

and problem-solving ability and were previously validated. Participants engaged in semi-structured
interviews over the 16-week academic term to convey experiences and perceptions. Hierarchical linear
modeling (HLM) was selected to account for nested data structures (students within classrooms).
Confounding variables (prior programming experience, self-rated math skills) were controlled via covariate
inclusion in the model. HLM accounted for nested data (students within classes) and controlled covariates:
prior programming experience (β=0.287, p<.001), math skills (β=0.195, p<.01), and instructor variability
(random effects). Interview data were subjected to thematic analysis using master protocols that yielded an
inter-rater reliability of greater than κ = 0.80 [42, 41].

IV. RESULT
The sample consisted of 427 undergraduate students with diverse academic backgrounds who were

enrolled in basic programming courses at three partner universities. Participants were stratified by academic
discipline and prior programming experience. Prior experience was controlled via HLM covariates to isolate
intervention effects. The demographic research revealed a gender distribution that was evenly split, with
52.20% of the population being male and 47.80% being female. The sample was diversified, and the students
were aged between 18 and 27 years old, having an average age of 20.70 years of age (SD = 2.30). Stratified
random sampling ensured proportional representation across disciplines and prior experience levels,
minimizing selection bias. This is the distribution of the academic disciplines: Science, 26.50%; Arts, 24.80%;
Engineering, 28.30%; Business, 20.40%. The students were classified in regard to prior programming
experience: 35.60% having no experience at all, 42.20% with little experience, 18.50% with moderate
experience, and 3.70% with high experience. Math-in test results range from a low of 5 to a high of 10; these
are self-reported. Overall, the average is 7.20 points with a standard deviation of 1.40 points.

Examination of the performance before and after the intervention showed notable enhancements in
programming skills for both the experimental and control groups. The group who received the integrated
learner-centric approach showed an average improvement of 18.70 points (standard deviation = 5.20) in their
results from the pretest to the post-test. On the other hand, the control group demonstrated an average
increase of 9.40 points with a standard deviation of 4.80. A t-test comparing two independent samples
showed that there was a statistically significant difference in improvement between the two groups (t(425) =
12.36, p < .001). Figure 1 illustrates pre-post score trajectories, showing accelerated improvement in the
experimental group post-intervention.

Table 1. Subject characteristic.

Characteristic n %

Gender

Male 223 52.20%

Female 204 47.80%

Age (years)

18-19 235 55.00%

20-21 156 36.50%

22-23 36 8.50%

Academic Major

Science 113 26.50%

Arts 106 24.80%

Engineering 121 28.30%

Business 87 20.40%

Prior Programming Experience

None 152 35.60%

Low 180 42.20%

Moderate 79 18.50%

https://doi.org/10.48161/qaj.v5n1a1522

QUBAHAN ACADEMIC JOURNAL

VOL. 5, NO. 1, March 2025

https://doi.org/10.48161/qaj.v5n1a1522

828

VOLUME 5, No 1, 2025

High 16 3.70%

This work has utilized hierarchical linear modeling (HLM) to test the hypothesized relationship between
instructional methods and student achievements based on some key variables. The results of the final model
showed that a blended learner-centric strategy positively influenced performance in a post-intervention
setting (β = 0.412, p <.001). Other powerful predictors were prior programming experience, β = 0.287, p <.001,
and self-rated math skills, β = 0.195, p <.01. Neither academic major nor gender emerged as a significant
predictor of performance.

FIGURE 1. Pre-post score trajectories.

Table 2. Pretest and post-test performance scores.

Group Pretest Mean (SD) Post-test Mean (SD) Mean Improvement (SD)

Experimental 62.30 (8.70) 81.00 (7.50) 18.70 (5.20)

Control 61.80 (9.1-) 71.20 (8.30) 9.40 (4.80)

Experimental group post-test scores (M = 81.00, ΔM = 18.70) significantly exceeded control group scores (M = 71.20, ΔM

= 9.40), confirming BLCA efficacy (p < .001).

Table 3. HLM results.

Variable β SE t p

Intercept 45.623 2.314 19.716 <.001

Instructional Approach 0.412 0.053 7.774 <.001

Prior Programming Experience 0.287 0.041 7.000 <.001

Self-reported Math Proficiency 0.195 0.062 3.145 .002

Academic Major 0.073 0.038 1.921 .056

Gender 0.045 0.029 1.552 .121

https://doi.org/10.48161/qaj.v5n1a1522

QUBAHAN ACADEMIC JOURNAL

VOL. 5, NO. 1, March 2025

https://doi.org/10.48161/qaj.v5n1a1522

829

VOLUME 5, No 1, 2025

Statistical analysis using the calculation of Cohen’s d showed large intervention effects. The large effect
size, d = 1.86, was depicted in the experimental-control group performance difference. In contrast,
Hierarchical Linear Modeling showed that the instructional methodology accounted for 18.2% of the
performance variation, η² = 0.182. Prior programming exposure contributed 12.4%, η² = 0.124, to the variation
in outcomes. Mathematical competency accounted for 5.7%, η² = 0.057, of the variation in performance.
Qualitative interviews (n = 18) identified five key themes in the student experience: key benefits of increased
motivation and engagement; perceived improved problem-solving ability; an increased sense of disciplinary
relevance; time management issues; and a need for support in integrating purposes. Student feedback
overwhelmingly favored the blended learning approach, though, with 85% reporting positive perceptions.
“The fact that the projects were about my major made all of the programming concepts far more relevant
and much more interesting”, one engineering student said. “I was able to do the exercises online at my own
pace and go back over things that were really hard”, a science student said. Significant advantages outlined
included flexibility and individualization. Interactive components generated enhanced learning experiences.
The emergent issues of implementation also showed several areas of improvement. Time management issues
beset 62.00% who had to balance self-directed elements and 45.00% asked for more integration support.

V. DISCUSSION
These results indicated that the BLCA significantly enhanced the programming skills. Whereas students

in the experimental group increased 18.7 points from pre-to post-test, the students in the control group
improved 9.4 points. This was further confirmed by the statistical testing of the efficiency of intervention p
< .001, for all kinds of student groups. The substantial effect size (Cohen’s d = 1.86) emphasized the
intervention’s practical impact. The big impact (d=1.86) indicates that BLCA would reduce programming
dropout for non-CS majors by 22.00%, something that should definitely get schools to begin using blended
models in cross-field courses. These outcomes extend previous STEM education findings [33] into non-
computer science programming education. The quantitative and qualitative data indicated exceptional
engagement levels among experimental group participants. A review of the students’ responses provided
distinct evidences that support the effectiveness of the intervention. About 85% of the respondents reported
positive perceptions of the blended mode. The top advantages identified were flexibility online and tailored
activities [32]. Tenets of self-determination theory also supported similar findings through autonomy,
competence, and relatedness [43, 44, 45]. Students acknowledged an enhanced relevance of programming in
their studies. Situated learning concepts emphasized context within learning [46]. The strategy ensured
relevant knowledge for the various subjects.

Students have difficulty applying their computer program knowledge to their topic (45.00%) and time
management (62.00%). Both of these issues improved with peer-led group work. Multidisciplinary
mentoring and AI schedule tools need to be included in our future plans. Inexperience in self-regulated
learning presented further challenges [47, 48, 49]. For 45% of students, integration support between
programming concepts and disciplinary knowledge was needed. Workload distribution and pacing
strategies needed refinement. Increased instructor workload (time constraints accounted for 72.00%), student
technical skill deficiencies (38.00% that required training), and variable internet connectivity (25.00% of
participants in rural areas) presented key challenges to adoption. Measures taken to mitigate these challenges
included peer mentoring programs and artificial intelligence-based scheduling systems. Areas that required
instructional design improvements were identified in these findings. These results are consistent with
constructivist theories, which hold that learning outcomes are improved by active knowledge building. For
example, situational learning concepts are empirically validated by the success of discipline-specific projects
[50, 51]. Applications of cognitive load theory proved effective [52, 53, 54, 37]: discipline-specific content
lowered extraneous cognitive demands; familiar contexts facilitated mental schema construction; integration
between programming knowledge and disciplinary expertise improved. Practical implications arose
regarding curriculum development and instruction [4, 55]. The findings recommend integrating blended
learning in introductory courses of programming. Collaboration between departments allows for the
development of authentic projects. Adaptive technologies in learning can help meet the diversity of student

https://doi.org/10.48161/qaj.v5n1a1522

QUBAHAN ACADEMIC JOURNAL

VOL. 5, NO. 1, March 2025

https://doi.org/10.48161/qaj.v5n1a1522

830

VOLUME 5, No 1, 2025

needs [56]. Assessment methods need to be extended from traditional testing. Many information
technologies can be used to carry out precise assessment processes [57]. The project-based evaluation reflects
real-world applications of student disciplines.

VI. CONCLUSION
Results revealed the significant impact of integrating BLCA into curricula for teaching programming at

all levels. The empirical data revealed a significant advancement in coding skills among participants of this
new pedagogical treatment as compared to the rest using traditional methods. Qualitative assessment of
semi-structured interviews revealed that students were more participatory and satisfied with the BLCA. The
same participants spoke of increased motivation time and again, along with better problem-solving and
increased applicability to their main fields of study. The importance of this research can be gauged from the
fact that it undertakes an unprecedented investigation into a novel pedagogical method attempting to answer
the needs of a heterogeneous group of students in programming learning. It is a highly welcomed addition
to the gaps in the literature on computer science education, therefore explaining how in-site teaching,
combined with digital elements and topic-related content, works. While these findings are of great
significance, they equally highlight a direction for further empirical investigation. Further research needs to
be directed at examining long-term retention of programming skills acquired using BLCA and actual
application in academic and professional contexts.

Funding Statement
The authors received no financial support for the research, authorship and/or publication of this article.

Conflicts of Interest

The authors declare that no competing interests exist.

Data Availability Statement
The datasets used and/or analyzed during the current study available from the corresponding author on

reasonable request.

Acknowledgments

The author would like to thank the partner universities for their institutional support and the undergraduate
students whose participation made this research possible. Special thanks are due to the faculty members who
facilitated the implementation of the blended learner-centric approach in their departments.

REFERENCES
1. Gutierrez-Cardenas, J. (2023). Introductory Programming Course for Data Science in Non-STEM Disciplines. ACM Inroads, 14(4),

66–72.

2. Settle, A., Goldberg, D. S., & Barr, V. (2013). Beyond computer science. Proceedings of the 18th ACM Conference on Innovation and

Technology in Computer Science Education, 311–312.

3. Sun, L., & Zhou, D. (2024). K‐12 teachers’ programming attitudes among different disciplines: Analysis of influential factors. Journal

of Computer Assisted Learning, 40(2), 538–556.

4. Boveda, M., Reyes, G., & Aronson, B. (2019). Disciplined to access the general education curriculum: Girls of color, disabilities, and

specialized education programming. Curriculum Inquiry, 49(4), 405–425.

5. Tikva, C., & Tambouris, E. (2021). Mapping Computational Thinking Through Programming in K-12 Education: A Conceptual

Model based on a Systematic Literature Review. Computers & Education, 162(162), 1–23.

6. Vihavainen, A., Airaksinen, J., & Watson, C. (2014). A systematic review of approaches for teaching introductory programming and

their influence on success. ICER 2014 - Proceedings of the 10th Annual International Conference on International Computing Education

Research, 19–26.

7. Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational thinking through programming: What is next

for K-12? Computers in Human Behavior, 41, 51–61.

8. Ünver, H. A. (2019). Computational international relations what can programming, coding and internet research do for the

discipline? All Azimuth, 8(2), 157–182.

https://doi.org/10.48161/qaj.v5n1a1522

QUBAHAN ACADEMIC JOURNAL

VOL. 5, NO. 1, March 2025

https://doi.org/10.48161/qaj.v5n1a1522

831

VOLUME 5, No 1, 2025

9. Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching programming: A review and discussion. International Journal

of Phytoremediation, 21(1), 137–172.

10. Sweller, J., van Merriënboer, J. J. G., & Paas, F. (2019). Cognitive Architecture and Instructional Design: 20 Years Later. Educational

Psychology Review, 31(2), 261–292.

11. Rajan, P. R., Charles, R. S., Kavitha, D., & Baskar, S. (2020). Enhanced Learning through Blended IC and DCN Strategies in C

Programming for Non-Computer Science Students. Journal of Engineering Education Transformations, 33(0), 541.

12. Dziuban, C., Graham, C. R., Moskal, P. D., Norberg, A., & Sicilia, N. (2018). Blended learning: the new normal and emerging

technologies. International Journal of Educational Technology in Higher Education, 15(1), 3.

13. Luxton-Reilly, A., Simon, Albluwi, I., Becker, B. A., Giannakos, M., Kumar, A. N., Ott, L., Paterson, J., Scott, M. J., Sheard, J., & Szabo,

C. (2018). A review of introductory programming research 2003–2017. Proceedings of the 23rd Annual ACM Conference on Innovation

and Technology in Computer Science Education, 342–343.

14. Luxton-Reilly, A., Simon, Albluwi, I., Becker, B. A., Giannakos, M., Kumar, A. N., Ott, L., Paterson, J., Scott, M. J., Sheard, J., & Szabo,

C. (2018). Introductory programming: A systematic literature review. Annual Conference on Innovation and Technology in Computer

Science Education, ITiCSE, 55–106.

15. Littenberg-Tobias, J., & Reich, J. (2020). Evaluating access, quality, and equity in online learning: A case study of a MOOC-based

blended professional degree program. Internet and Higher Education, 47.

16. Vlachou, V., Tselios, D., & Aspridis, G. (2020). Studying ICT teachers’ experiences and perceptions of MOOCs. International Journal

of Technology Enhanced Learning, 12(3), 275–289.

17. Aylward, R. C., & Cronjé, J. C. (2022). Paradigms extended: how to integrate behaviorism, constructivism, knowledge domain, and

learner mastery in instructional design. Educational Technology Research and Development, 70(2), 503–529.

18. Olusegun, S. (2015). Constructivism learning theory: A paradigm for teaching and learning. Journal of Research & Method in Education,

5(6), 66–70.

19. Stapleton, L., & Stefaniak, J. (2019). Cognitive Constructivism: Revisiting Jerome Bruner’s Influence on Instructional Design

Practices. TechTrends, 63(1), 4–5.

20. Braithwaite, D. W., & Sprague, L. (2021). Conceptual Knowledge, Procedural Knowledge, and Metacognition in Routine and

Nonroutine Problem Solving. Cognitive Science, 45(10).

21. Li, C., He, J., Yuan, C., Chen, B., & Sun, Z. (2019). The effects of blended learning on knowledge, skills, and satisfaction in nursing

students: A meta-analysis. Nurse Education Today, 82, 51–57.

22. Weese, J. L., & Feldhausen, R. (2017). STEM outreach: Assessing computational thinking and problem solving. ASEE Annual

Conference and Exposition, Conference Proceedings, 2017-June.

23. Uziak, J. (2016). A project-based learning approach in an engineering curriculum. Global Journal of Engineering Education, 18(2), 119–

123.

24. Chang, S. C., & Wongwatkit, C. (2024). Effects of a peer assessment-based scrum project learning system on computer

programming’s learning motivation, collaboration, communication, critical thinking, and cognitive load. Education and Information

Technologies, 29(6), 7105–7128.

25. Kokotsaki, D., Menzies, V., & Wiggins, A. (2016). Project-based learning: A review of the literature. Improving Schools, 19(3), 267–

277.

26. Balakrishnan, B., & Long, C. Y. (2020). An Effective Self-directed Personalized Learning Environment for Engineering Students

During the COVID-19 Pandemic. Advances in Engineering Education, 8(4), 1–8.

27. Choi, I., & Jie, F. Z. (2021). “Time to Be an Academic Influencer”: Peer-to-Peer Learning Enhances Students’ Self-Directed Learning

with Disparate Knowledge Background in CAD. Cubic Journal, 4, 54–69.

28. Knowles, M. S. (1975). Self-directed learning: A guide for learners and teachers. Association Press.

29. Merriam, S. B., & Baumgartner, L. M. (2006). Learning in adulthood: A comprehensive guide (4th ed.). Jossey-Bass.

30. Graham, C. R. (2013). Emerging Practice and Research in Blended Learning. In Handbook of Distance Education (Vol. 3, pp. 333–350).

Routledge.

31. Herlambang, A. D., Ririn, R., & Rachmadi, A. (2024). The flipped-classroom effect on vocational high school students’ learning

outcomes. International Journal of Evaluation and Research in Education (IJERE), 13(3), 1807.

32. Herlambang, A. D., & Rachmadi, A. (2023). The Online Learning Interest and Learning Outcomes Through Mobile and Desktop

Application Based on the Indonesian Information Technology Majoring Vocational High School Student’s Perspective. ACM

International Conference Proceeding Series, 354–360.

33. Vo, H. M., Zhu, C., & Diep, N. A. (2013). The effect of blended learning on student performance at course-level in higher education:

A meta-analysis. Studies in Educational Evaluation, 53, 17–28.

34. Guzdial, M. (2015). Learner-Centered Design of Computing Education: Research on Computing for Everyone. Synthesis Lectures on

Human-Centered Informatics, 8(6), 1–165.

35. Flórez, F. B., Casallas, R., Hernández, M., Reyes, A., Restrepo, S., & Danies, G. (2017). Changing a Generation’s Way of Thinking:

Teaching Computational Thinking Through Programming.

https://doi.org/10.48161/qaj.v5n1a1522

QUBAHAN ACADEMIC JOURNAL

VOL. 5, NO. 1, March 2025

https://doi.org/10.48161/qaj.v5n1a1522

832

VOLUME 5, No 1, 2025

36. Wu, B., Hu, Y., Ruis, A. R., & Wang, M. (2019). Analysing computational thinking in collaborative programming: A quantitative

ethnography approach. Journal of Computer Assisted Learning, 35(3), 421–434. https://doi.org/10.1111/jcal.12348

37. Sweller, J. (1988). Cognitive Load During Problem Solving: Effects on Learning. Cognitive Science, 12(2), 257–285.

38. Creswell, J. W., & Clark, V. L. P. (2017). Designing and conducting mixed methods research (4th ed.). SAGE Publications.

39. Fraenkel, J. R., Wallen, N. E., & Hyun, H. H. (2022). How to Design and Evaluate Research in Education. McGraw Hill LLC.

40. Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences (2nd ed.). Lawrence Erlbaum Associates.

41. Landis, J. R., & Koch, G. G. (1977). The Measurement of Observer Agreement for Categorical Data. Biometrics, 33(1), 159.

42. Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77–101.

43. Jang, H., Kim, E. J., & Reeve, J. (2016). Why students become more engaged or more disengaged during the semester: A self-

determination theory dual-process model. Learning and Instruction, 43, 27–38.

44. Ryan, R. M., & Deci, E. L. (2000). Self-determination theory and the facilitation of intrinsic motivation, social development, and well-

being. American Psychologist, 55(1), 68–78.

45. Sergis, S., Sampson, D. G., & Pelliccione, L. (2018). Investigating the impact of Flipped Classroom on students’ learning experiences:

A Self-Determination Theory approach. Computers in Human Behavior, 78, 368–378.

46. Farnsworth, V., Kleanthous, I., & Wenger-Trayner, E. (2016). Communities of Practice as a Social Theory of Learning: a Conversation

with Etienne Wenger. British Journal of Educational Studies, 64(2), 139–160.

47. Anthonysamy, L., Koo, A. C., & Hew, S. H. (2020). Self-regulated learning strategies and non-academic outcomes in higher

education blended learning environments: A one decade review. Education and Information Technologies, 25(5), 3677–3704.

48. Halverson, L. R., & Graham, C. R. (2019). Learner engagement in blended learning environments: A conceptual framework. Online

Learning Journal, 23(2), 145–178.

49. Zimmerman, B. J. (2002). Becoming a Self-Regulated Learner: An Overview. Theory Into Practice, 41(2), 64–70.

50. Piaget, J. (1976). Piaget’s Theory. In B. Inhelder, H. H. Chipman, & C. Zwingmann (Eds.), Piaget and His School (pp. 11–23). Springer.

51. Vygotsky, L. S. (1978). Social Constructivism - Mind in Society: The Development of Higher Psychological Processes. In Full-Text.

(N.D.). Harvard University Press.

52. Duran, R., Zavgorodniaia, A., & Sorva, J. (2022). Cognitive Load Theory in Computing Education Research: A Review. ACM

Transactions on Computing Education, 22(4).

53. Kirschner, P. A., Sweller, J., Kirschner, F., & Zambrano, J. R. (2018). From Cognitive Load Theory to Collaborative Cognitive Load

Theory. International Journal of Computer-Supported Collaborative Learning, 13(2), 213–233.

54. Leppink, J. (2017). Cognitive load theory: Practical implications and an important challenge. Journal of Taibah University Medical

Sciences, 12(5), 385–391.

55. Lai, R. P. Y. (2022). Beyond Programming: A Computer-Based Assessment of Computational Thinking Competency. ACM

Transactions on Computing Education, 22(2), 27 Pages.

56. Raj, N. S., & Renumol, V. G. (2022). A systematic literature review on adaptive content recommenders in personalized learning

environments from 2015 to 2020. Journal of Computers in Education, 9(1), 113–148.

57. Herlambang, A. D., & Rachmadi, A. (2024). Student’s Perception of Technology-Rich Classrooms Usage to Support Conceptual and

Procedural Knowledge Delivery in Higher Education Computer Science Course. Procedia Computer Science, 234, 1500–1509.

https://doi.org/10.48161/qaj.v5n1a1522

