
 

 

QUBAHAN ACADEMIC JOURNAL 

VOL. 5, NO. 1, March 2025 

https://doi.org/10.48161/qaj.v5n1a1522 

 

 

 
824 

VOLUME 5, No 1, 2025  

 

Efficacy of Blended Learner-Centric Approaches in Computer 

Programming Education 

Admaja Dwi Herlambang 1* 

 
1 Information Technology Education Program, Computer Science Faculty, Universitas Brawijaya, Malang 65145, East 

Java, Indonesia. 

* Corresponding author: herlambang@ub.ac.id. 

ABSTRACT: This research evaluates the effectiveness of blended learner-centric approaches (BLCA) 

to programming education for several student cohorts in a multitude of disciplines. In a mixed-method 

design, 427 undergraduate students participated in a quasi-experimental study comparing traditional 

instruction to a BLCA. Quantitative data were analyzed using hierarchical linear modelling (HLM), 

while qualitative data were subjected to thematic analysis. The quantitative results indicated a 

statistically significant difference in computer programming skill improvement between the control 

group (ΔM=9.40, SD=4.80) and experimental group (ΔM=18.70, SD=5.20), coupled with a large effect 

size (Cohen’s d=1.86, p<.001). This highlights the efficacy of BLCA in enriching problem-solving 

capabilities and cross-field transferability. Quantitative results revealed a statistically significant 

difference in programming proficiency gains between the experimental (ΔM=18.70, SD=5.20) and 

control groups (ΔM=9.40, SD=4.80), with a large effect size (Cohen’s d=1.86, p<.001). This underscores 

BLCA’s superiority in fostering interdisciplinary relevance and problem-solving skills. The effect size, 

Cohen’s d = 1.86, indicates huge practical significance. Qualitative findings included increased 

engagement, improved problem-solving ability, and increased perceived relevance of programming to 

primary fields of study. On the negative side, the challenges to time management and integration of 

programming concepts with domain-specific knowledge were raised. It provides the refined models of 

blended learning for programming education, along with pedagogical implications of teaching 

programming to non-computer science majors. 

Keywords: blended learner-centric, computer programming, programming education, programming proficiencies, 

multidisciplinary programming. 

I.  INTRODUCTION 
Recently, programming literacy has also become imperative in many other fields of study in higher 

education [1, 2, 3]. Considering that technology has permeated every field, the concepts of programming too 
should be inculcated across most curricula other than traditional computer science  [4, 5]. This paradigm shift 
has had its share of opportunities and challenges for people teaching programming over time within diverse 
classes. Programming skills are nowadays taught not only by computer science departments but also by 
engineering and natural science along with social studies programs such as business administration and 
psychology [6]. In fact, the latter has recently become the default in-class teaching activity on campus. A 
vision is clear, computational thinking is becoming one of the essential skills in all disciplines for solving 
problems and being creative [7, 8]. This research represents significant strides in programming education, 
from ‘syntax teaching’ to a ‘concept first, practice-oriented’ approach. Indeed, the change has equally proved 
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that the opposite is true: it is not easy to teach programming to several diverse groups. The diversity in 
students’ backgrounds, experiences, and motivations makes teaching difficult [4, 9]. Students from other than 
computing disciplines in programming courses also bring with them their peculiar mathematics skills, 
reasoning, and technical capabilities. It gets very tricky for a fresher to bind all the concepts of programming 
with syntax, especially for non-computer science students. Programming constructs are usually abstract and 
need some specific syntax, which loads students’ cognitive capacity and hurts motivation [10]. The primary 
problem addressed is the cognitive overload and disengagement faced by non-CS students in traditional 
programming courses, exacerbated by insufficient alignment between programming concepts and 
disciplinary contexts. This results in increased dropout rates in introductory programming classes, poor 
learning outcomes, and there’s a need for more innovative teaching methods that match the students’ 
diversity. Listed are the challenges called upon; the need to address them introduces a study recently to 
introduce blended learner-centric approach (BLCA) into programming education. BLCA is a model that 
combines digital learning and learning in person; hence, it has a highly scalable framework for dynamic, 
learner-driven experiences [11]. 

The learner-centric approach adjusts resources and activities to the individual student and his or her 
interests [12, 13, 14]. Such a personalized approach to learning has been proposed to overcome the cognitive 
load problems of programming education and to make it relevant for a diverse set of students. The BLCA 
will involve the flipped classroom, project-based learning, and adaptive online platforms. All these looks at 
optimizing instructional time by saving the content delivery for at-home practice at one’s own pace while 
prioritizing real interaction and active learning on campus. This would enable the incorporation of domain 
projects into students’ fields, raising relevance and, therefore, levels of engagement. It also develops real-
world applications, placing programming in context. Recent studies (2018–2023) on blended learning 
predominantly focus on computer science majors, leaving a critical gap in understanding its efficacy for 
heterogeneous cohorts integrating domain-specific projects. This study addresses this by evaluating BLCA’s 
adaptability to non-CS disciplines. According to them, success in this new blended MOOC environment will 
depend upon investigations into the relationship between instructional modalities, learner demographics, 
and disciplinary settings [15, 16]. This study aims to (1) develop a pedagogical framework for 
interdisciplinary programming instruction via BLCA, (2) evaluate discipline-specific project integration’s 
impact on engagement, and (3) propose strategies for cognitive load reduction in diverse cohorts. It, 
therefore, attempts to reach how these combined, learner-centric approaches improve programming skills in 
a diverse student population; how project assignments, related to discipline, impact the engagement and 
satisfaction of students; and explore learners’ perceptions of their experiences within the new model. 

II.  LITERATURE REVIEW 
Constructivism also stands very strongly at the root of learner-centric education and considers learners 

very active in building their knowledge of the world. According to constructivism, learning is considered an 
active construction process, not a knowledge acquisition process [17, 18, 19]. This contradicts the traditional 
view of knowledge transmission yet heightens how learners derive meaning from experience. Constructivist 
principles in programming education invite instructors to establish an investigation, experimentation, and 
problem-solving environment. BLCA integrates cognitive load theory by chunking syntax practice into 
adaptive modules and self-determination theory by allowing students to select domain-specific projects, 
enhancing autonomy and relevance. The students build a view of programming themselves based on direct 
experience and reflection [20, 21, 22]. The constructivist theory of programming education engendered 
notable changes in teaching strategies towards more active modes of learning and engagement by students. 
Probably the most well-known pedagogic model is that of Project-Based Learning (PjBL) rooted in the 
constructivist approach [23]. Working within this framework, students are challenged with real-life problems 
necessitating the use of their programming skills in developing solutions, as revealed in several research 
studies [24, 25, 23]. Generally, PjBL in programming courses assumes collaboration in teamwork regarding 
software projects while developing the student’s technical capabilities for critical thinking and problem-
solving. 
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In a nutshell, self-directed learning is essentially based on constructivist principles-project-based 
learning, with the student of legal age taking responsibility for one’s learning processes [26, 27]. Self-directed 
learning involves a person’s taking responsibility for their learning-defined by Knowles as diagnosing 
learning needs, establishing goals, identifying resources, choosing strategies, and evaluating learning [28, 
29]. Applying the principles of self-directed learning in programming education allows learners to explore 
concepts in self-determined ways at their own pace and in a way appropriate to their learning style and 
interests. Similarly, blended learning models in higher education should be able to foster these learner-
centric methods. In such fields of study, blended learning has dominated for quite a significant number, 
including a mix of on-campus and online experiences. It merges the very best features of the traditional face-
to-face learning methodology with a number of advantages pertaining only to the online learning world, 
such as access, personalization, and digital resources [30, 31]. Recent studies verify that hybrid educational 
models that combine adaptive online platforms boost engagement and learning process related to 
programming curricula, particularly for non-computer science majored students. Recent studies verify that 
hybrid educational models that combine adaptive online platforms boost engagement and learning process 
related to programming curricula, particularly for non-computer science majored students [31, 32]. 
Compared to traditional approaches, the blended learning approach in STEM subjects has been reported to 
bring better academic performance [33]. 

Blended learning applications, very popular today, are not that easy in programming education. Some 
specific methodologies have been developed to respond to the opportunities and challenges brought in by 
students not majoring in Computer Science. Traditional methodologies usually work for introductory 
programming classes where students have diverse mathematical and logical skills. These courses are about 
basic programming concepts and problem-solving, not advanced software development techniques [34, 13]. 
Their weaknesses are failure to engage students, failure to meet diverse needs, and failure to see the relevance 
of programming in other fields. For such issues, interdisciplinary approaches to programming training 
remain indispensable. They introduce the discipline of programming as related to students’ major fields by 
demonstrating how these coding skills solve particular problems in the latter major fields [35, 2, 36]. 
Examples may be taken from biology, economics, or digital humanities; programming may be illustrated as 
used for data analysis, modeling, or creative presentation. These cognitive load issues are also relevant to 
programming training outside of computer science. Programming involves syntax understanding and 
carrying out processes of logical reasoning while solving problems. To the novice, especially those who have 
never used computers, this may overload and slow down the learning and retention process [37, 10]. The 
solution for such a challenge is a visual programming language, scaffolded learning, or even just worked 
examples, each minimizing cognitive load so that the core conceptual understanding is what the learner 
focuses on. 

III.  METHOD 
A mixed-method design evaluated BLCA programming education effectiveness across diverse student 

groups [38]. The quasi-experimental pre-test and post-test design were used because the true randomization 
of participants would have created an ethical problem [39]. While the sample included diverse disciplines 
(Science: 26.5%, Engineering: 28.3%), STEM fields constituted 54.8% of participants. Weighted regression 
confirmed no significant bias, but findings may overestimate BLCA efficacy for non-STEM cohorts. Statistical 
power calculations (0.80) and anticipated effect size informed the sample size determination [40]. The 
intervention contrasted traditional programming instruction with a BLCA. Control groups received 
conventional lecture-based teaching and standardized assignments, while experimental groups experienced 
personalized learning paths combining face-to-face instruction with online components. Control groups 
attended 4-hour weekly lectures that featured identical syntax drills, whereas experimental groups enrolled 
in blended modules that included their respective field-specific projects. Assessment instruments combined 
quantitative and qualitative measures. Personalized paths were generated via pre-course diagnostic 
assessments (syntax, logic, math skills) and adaptive algorithms adjusting content difficulty based on weekly 
performance metrics. Pre- and post-intervention programming assessments measured technical proficiency 
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and problem-solving ability and were previously validated. Participants engaged in semi-structured 
interviews over the 16-week academic term to convey experiences and perceptions. Hierarchical linear 
modeling (HLM) was selected to account for nested data structures (students within classrooms). 
Confounding variables (prior programming experience, self-rated math skills) were controlled via covariate 
inclusion in the model. HLM accounted for nested data (students within classes) and controlled covariates: 
prior programming experience (β=0.287, p<.001), math skills (β=0.195, p<.01), and instructor variability 
(random effects). Interview data were subjected to thematic analysis using master protocols that yielded an 
inter-rater reliability of greater than κ = 0.80 [42, 41]. 

IV. RESULT 
The sample consisted of 427 undergraduate students with diverse academic backgrounds who were 

enrolled in basic programming courses at three partner universities. Participants were stratified by academic 
discipline and prior programming experience. Prior experience was controlled via HLM covariates to isolate 
intervention effects. The demographic research revealed a gender distribution that was evenly split, with 
52.20% of the population being male and 47.80% being female. The sample was diversified, and the students 
were aged between 18 and 27 years old, having an average age of 20.70 years of age (SD = 2.30). Stratified 
random sampling ensured proportional representation across disciplines and prior experience levels, 
minimizing selection bias. This is the distribution of the academic disciplines: Science, 26.50%; Arts, 24.80%; 
Engineering, 28.30%; Business, 20.40%. The students were classified in regard to prior programming 
experience: 35.60% having no experience at all, 42.20% with little experience, 18.50% with moderate 
experience, and 3.70% with high experience. Math-in test results range from a low of 5 to a high of 10; these 
are self-reported. Overall, the average is 7.20 points with a standard deviation of 1.40 points. 

Examination of the performance before and after the intervention showed notable enhancements in 
programming skills for both the experimental and control groups. The group who received the integrated 
learner-centric approach showed an average improvement of 18.70 points (standard deviation = 5.20) in their 
results from the pretest to the post-test. On the other hand, the control group demonstrated an average 
increase of 9.40 points with a standard deviation of 4.80. A t-test comparing two independent samples 
showed that there was a statistically significant difference in improvement between the two groups (t(425) = 
12.36, p < .001). Figure 1 illustrates pre-post score trajectories, showing accelerated improvement in the 
experimental group post-intervention. 

Table 1. Subject characteristic. 

Characteristic n % 

Gender 
  

Male 223 52.20% 

Female 204 47.80% 

Age (years) 
  

18-19 235 55.00% 

20-21 156 36.50% 

22-23 36 8.50% 

Academic Major 
  

Science 113 26.50% 

Arts 106 24.80% 

Engineering 121 28.30% 

Business 87 20.40% 

Prior Programming Experience 
  

None 152 35.60% 

Low 180 42.20% 

Moderate 79 18.50% 
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High 16 3.70% 

This work has utilized hierarchical linear modeling (HLM) to test the hypothesized relationship between 
instructional methods and student achievements based on some key variables. The results of the final model 
showed that a blended learner-centric strategy positively influenced performance in a post-intervention 
setting (β = 0.412, p <.001). Other powerful predictors were prior programming experience, β = 0.287, p <.001, 
and self-rated math skills, β = 0.195, p <.01. Neither academic major nor gender emerged as a significant 
predictor of performance.  

FIGURE 1. Pre-post score trajectories. 

Table 2. Pretest and post-test performance scores. 

Group Pretest Mean (SD) Post-test Mean (SD) Mean Improvement (SD) 

Experimental 62.30 (8.70) 81.00 (7.50) 18.70 (5.20) 

Control 61.80 (9.1-) 71.20 (8.30) 9.40 (4.80) 

Experimental group post-test scores (M = 81.00, ΔM = 18.70) significantly exceeded control group scores (M = 71.20, ΔM 

= 9.40), confirming BLCA efficacy (p < .001). 

Table 3. HLM results. 

Variable β SE t p 

Intercept 45.623 2.314 19.716 <.001 

Instructional Approach 0.412 0.053 7.774 <.001 

Prior Programming Experience 0.287 0.041 7.000 <.001 

Self-reported Math Proficiency 0.195 0.062 3.145 .002 

Academic Major 0.073 0.038 1.921 .056 

Gender 0.045 0.029 1.552 .121 
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Statistical analysis using the calculation of Cohen’s d showed large intervention effects. The large effect 
size, d = 1.86, was depicted in the experimental-control group performance difference. In contrast, 
Hierarchical Linear Modeling showed that the instructional methodology accounted for 18.2% of the 
performance variation, η² = 0.182. Prior programming exposure contributed 12.4%, η² = 0.124, to the variation 
in outcomes. Mathematical competency accounted for 5.7%, η² = 0.057, of the variation in performance. 
Qualitative interviews (n = 18) identified five key themes in the student experience: key benefits of increased 
motivation and engagement; perceived improved problem-solving ability; an increased sense of disciplinary 
relevance; time management issues; and a need for support in integrating purposes. Student feedback 
overwhelmingly favored the blended learning approach, though, with 85% reporting positive perceptions. 
“The fact that the projects were about my major made all of the programming concepts far more relevant 
and much more interesting”, one engineering student said. “I was able to do the exercises online at my own 
pace and go back over things that were really hard”, a science student said. Significant advantages outlined 
included flexibility and individualization. Interactive components generated enhanced learning experiences. 
The emergent issues of implementation also showed several areas of improvement. Time management issues 
beset 62.00% who had to balance self-directed elements and 45.00% asked for more integration support.  

V. DISCUSSION 
These results indicated that the BLCA significantly enhanced the programming skills. Whereas students 

in the experimental group increased 18.7 points from pre-to post-test, the students in the control group 
improved 9.4 points. This was further confirmed by the statistical testing of the efficiency of intervention p 
< .001, for all kinds of student groups. The substantial effect size (Cohen’s d = 1.86) emphasized the 
intervention’s practical impact. The big impact (d=1.86) indicates that BLCA would reduce programming 
dropout for non-CS majors by 22.00%, something that should definitely get schools to begin using blended 
models in cross-field courses. These outcomes extend previous STEM education findings [33] into non-
computer science programming education. The quantitative and qualitative data indicated exceptional 
engagement levels among experimental group participants. A review of the students’ responses provided 
distinct evidences that support the effectiveness of the intervention. About 85% of the respondents reported 
positive perceptions of the blended mode. The top advantages identified were flexibility online and tailored 
activities [32]. Tenets of self-determination theory also supported similar findings through autonomy, 
competence, and relatedness [43, 44, 45]. Students acknowledged an enhanced relevance of programming in 
their studies. Situated learning concepts emphasized context within learning [46]. The strategy ensured 
relevant knowledge for the various subjects.  

Students have difficulty applying their computer program knowledge to their topic (45.00%) and time 
management (62.00%). Both of these issues improved with peer-led group work. Multidisciplinary 
mentoring and AI schedule tools need to be included in our future plans. Inexperience in self-regulated 
learning presented further challenges [47, 48, 49]. For 45% of students, integration support between 
programming concepts and disciplinary knowledge was needed. Workload distribution and pacing 
strategies needed refinement. Increased instructor workload (time constraints accounted for 72.00%), student 
technical skill deficiencies (38.00% that required training), and variable internet connectivity (25.00% of 
participants in rural areas) presented key challenges to adoption. Measures taken to mitigate these challenges 
included peer mentoring programs and artificial intelligence-based scheduling systems. Areas that required 
instructional design improvements were identified in these findings. These results are consistent with 
constructivist theories, which hold that learning outcomes are improved by active knowledge building. For 
example, situational learning concepts are empirically validated by the success of discipline-specific projects 
[50, 51]. Applications of cognitive load theory proved effective [52, 53, 54, 37]: discipline-specific content 
lowered extraneous cognitive demands; familiar contexts facilitated mental schema construction; integration 
between programming knowledge and disciplinary expertise improved. Practical implications arose 
regarding curriculum development and instruction [4, 55]. The findings recommend integrating blended 
learning in introductory courses of programming. Collaboration between departments allows for the 
development of authentic projects. Adaptive technologies in learning can help meet the diversity of student 
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needs [56]. Assessment methods need to be extended from traditional testing. Many information 
technologies can be used to carry out precise assessment processes [57]. The project-based evaluation reflects 
real-world applications of student disciplines. 

VI.  CONCLUSION 
Results revealed the significant impact of integrating BLCA into curricula for teaching programming at 

all levels. The empirical data revealed a significant advancement in coding skills among participants of this 
new pedagogical treatment as compared to the rest using traditional methods. Qualitative assessment of 
semi-structured interviews revealed that students were more participatory and satisfied with the BLCA. The 
same participants spoke of increased motivation time and again, along with better problem-solving and 
increased applicability to their main fields of study. The importance of this research can be gauged from the 
fact that it undertakes an unprecedented investigation into a novel pedagogical method attempting to answer 
the needs of a heterogeneous group of students in programming learning. It is a highly welcomed addition 
to the gaps in the literature on computer science education, therefore explaining how in-site teaching, 
combined with digital elements and topic-related content, works. While these findings are of great 
significance, they equally highlight a direction for further empirical investigation. Further research needs to 
be directed at examining long-term retention of programming skills acquired using BLCA and actual 
application in academic and professional contexts. 
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