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ABSTRACT: Companies providing telecommunication services, especially in Beyond 5G networks, are in-

creasingly interested in traffic forecasting to improve the services provided to their users. However, fore-

casting network traffic is challenging due to traffic data's dynamic and non-stationary nature. This study 

proposes an effective deep learning-based traffic prediction technique using BiLSTM (Bidirectional Long 

Short-Term Memory). The proposed method begins with preprocessing using K-SVD (K-means Singular 

Value Decomposition) to reduce dimensionality and enhance data representation. Next, sparse feature ex-

traction is performed using Discrete Wavelet Transform (DWT), and a sparse matrix is constructed. A Ge-

netic Algorithm (GA) is used to optimize the sparse matrix, which effectively selects the most significant 

features for prediction. The optimized sparse matrix is fed into the BiLSTM model for accurate traffic fore-

casting. Experimental results show that the proposed method significantly reduces Mean Absolute Error 

(MAE), Mean Squared Error (MSE), and Root Mean Squared Error (RMSE) while achieving higher accuracy 

(ACC) compared to traditional neural networks. The results demonstrate that the proposed sparse matrix, 

integrated with BiLSTM, provides superior prediction accuracy and better generalization, making it a robust 

solution for network traffic forecasting in Beyond 5G networks. 

Keywords: forecasting, consumer traffic, cellular networks, re-current neural networks, memory. 

I. INTRODUCTION 

The rapid growth of cellular networks and the increasing demand for high-speed data services have made 
accurate network traffic prediction a crucial challenge for operators. With global mobile data traffic expected to 
increase significantly by 2030, efficient forecasting methods are essential for resource allocation, congestion 
management, and Quality of Service (QoS) optimization [1].  End users inside the base station’s coverage area in 
a cellular network can access calls, messages, and data services. Cellular networks offer services according to 
entirely distinct user needs [2, 3]. The increase in traffic consumption in cellular networks is a main challenge for 
cellular network operators in managing large network traffic and, at the same time, increasing Quality of Service 
(QoS). Cellular network operators may anticipate total network utilization and allocate re-sources appropriately 
by using accurate and precise traffic forecasting. In a cellular network with varying user counts, accurate 
fundamental traffic forecast may significantly aid in anticipating when network congestion would develop [4]. 
Moreover, modeling and forecasting of mobile network traffic in cellular networks can help telecommunication 
Businesses should look for methods to raise network quality of service [5, 6]. 

In order to aid with the appropriate distribution of resources (power and spectrum) in the cellular network 
and to lower network operating expenses, traffic forecast is essentially based on hourly data. Operators can 
modify and improve network settings depending on data consumption in the network by modeling and 
forecasting network traffic usage [7]. Cellular network traffic prediction is performed in two categories: long-
range prediction and short-range prediction [8, 9]. It offers a forecast for a considerable amount of time in long-
range prediction. This type of prediction is used to validate, accurately predict, and present network traffic 
patterns. This type of prediction can help design networks more easily. Short-range forecasting provides forecasts 
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for a short period of time, such as one hour, and can help improve network performance in providing services 
[10]. 

In another category of predicting data traffic consumption methods in telecommunication networks are 
divided into three categories: parametric, non-parametric, and machine learning methods [11]. Parametric 
methods depend on experimental data. Traditional methods like the autoregression integral moving average 
model (ARIMA) [12] are in this category. Although these methods are very stable, noise and unwanted or lost 
data have little effect on it. however, they cannot be used online. Non-parametric methods work without any 
restrictions on the data, but they need a lot of available data for prediction. Machine learning-based methods 
such as support vector regression (SVR) [13], Kalman filters [14], neural networks, support vector machine 
regression (SVMR) [15]and other machine learning methods [16] are in this category. Moreover, deep learning 
methods such as long-term short-term memory (LSTM) [17] are in this category, although they work with very 
high accuracy in forecasting, at the same time, they have high computational complexity [18]. 

Forecasting the traffic in cellular networks depends on the location and time. In linear methods such as 
ARIMA, ARMA and AR [19] both location and time dependence are considered. However, these traditional 
methods lose their effectiveness with the increase in the amount of data, the presence of missing data, and the 
noise in data. Non-linear techniques have been used to increase forecast accuracy and precision. Non-linear 
methods and models identify the correlation of traffic states better than linear methods. Non-linear 
transformations are used in a way that creates a suitable mapping between the input space and the feature space 
with high dimensions, such as the SVR method [20]. 

Besides the special features of linear and other non-linear methods, they also have major challenges and 
weaknesses. Determining the dimensions of the input space and the kernel function is both time-consuming and 
complicated [21]. Therefore, machine learning-based methods such as Support vector machines (SVM) [22] and 
k-nearest neighbors (KNN) [23] have also been proposed to increase the precision and accuracy of short-term 
traffic predictions. These methods consider the location of the data, and the prediction speed will be increased. 
However, it seems that neural networks and their deep learning methods, such as Bayesian networks (BN) [18], 
are more efficient in considering both spatial and temporal features in traffic data [19]. 

An artificial neural network is composed of a number of linked neurons. that use a mathematical or 
computational model to process information [24, 25]. Due to this unique characteristic, the neural network is used 
to model the complex relationship between output and input, such as nonlinear calculations, pattern recognition, 
voice recognition, and decision-making [26]. Recurrent Neural Networks (RNN) is a type of deep neural network 
that has advantages such as accurate prediction in time series, high convergence speed, and high adaptability. 
An RNN consists of an input layer, a feedback layer that provides state information, a hidden layer, and an output 
layer. In each layer, one or more neurons can transfer information from one layer to another by calculating the 
nonlinear functions of their weights [27]. This type of neural network has lower uncertainty and works better 
than artificial neural networks in modeling due to having a memory unit [28]. In contrast to the standard 
recurrent neural network, which rewrites the material at each time step, an LSTM recurrent neural network [24], 
By introducing gates, the network may decide whether to keep the present memory [25, 26]. The LSTM unit may 
effortlessly send information over a long distance if it intuitively recognizes a significant characteristic in the 
input sequence in the first steps. As a result, it can acquire and sustain potential long-term dependence. [27]. 
Therefore, an LSTM neural network can be used in the buffer units in a recurrent network [28]. 

Even though traffic prediction in cellular networks has been the subject of several studies, it is still a 
challenging concept. Among the challenges are the complex underlying patterns hidden in the network's 
historical traffic data, which can only be identified and explained by efficient prediction models that consider the 
data's correlation. Deep learning models have emerged in recent years. made significant strides in forecasting 
network traffic, but more work is still required. Another challenge that is commonly overlooked in today's 
literature is practical implementation. The unresolved gap between developing a high-performance prediction 
model and putting it into practice in a practical system [29]. Nevertheless, none of the existing research works 
have exploited it during traffic prediction. One of the key novelties of this study is the integration of K-SVD, 
Discrete Wavelet Transform (DWT), Genetic Algorithm (GA), and BiLSTM for network traffic prediction in 
Beyond 5G networks. Unlike conventional methods such as ARIMA, SVR, and LSTM, which individually face 
challenges like low accuracy, sensitivity to noise, or high computational complexity, our proposed approach 
enhances data preprocessing through K-SVD and DWT and optimizes sparse feature extraction using GA-based 
sparse matrix construction.  Also,  Discrete Wavelet Transform (DWT) offers several advantages in network traffic 
prediction. Unlike traditional methods, DWT provides multi-resolution time-frequency analysis, allowing it to 
effectively capture both short-term fluctuations and long-term trends in traffic data. Additionally, DWT enhances 
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feature extraction by reducing noise and filtering irrelevant data, improving machine learning models' accuracy 
and efficiency, particularly in non-stationary environments like 5G networks. Subsequently, the BiLSTM model, 
capable of capturing both long-term and short-term temporal dependencies, is employed for improved 
prediction accuracy. A comparative analysis with state-of-the-art techniques demonstrates that our approach 
enhances predictive accuracy and reduces error metrics (MAE, MSE, RMSE) compared to traditional models, 
leading to improved generalization capability. This hybrid methodology significantly advances accurate and 
efficient network traffic modeling, contributing to optimized resource allocation and enhanced 
telecommunication services in next-generation networks. The following are this paper's primary contributions: 
• Pre-processing step: A clustered K-means Singular Value Decomposition (K-SVD) is applied to enhance data 

quality and effectively remove noise.  
• Sparsity-based feature extraction: The Discrete Wavelet Transform (DWT) and Genetic Algorithm (GA) 

extract essential features while preserving data integrity.  
• BiLSTM network application: The Bidirectional Long Short-Term Memory (BiLSTM) network is a recurrent 

neural network technique used to capture both short-term and long-term dependencies in time-series data.  
• Performance enhancement: Integrating K-SVD and the sparsity-based approach enhances the BiLSTM 

model’s predictive performance, leading to more accurate and reliable network traffic forecasting. 
The following are provided in the remainder of this work. Related work on load terrific prediction is described 

in Section 2. The suggested approach will be used in the prediction model in Section 3. The suggested approach 
and related assessment measures will be examined in Section 4. Lastly, Section 5 will offer the conclusion. 

II. RELATED WORK 

Various studies have been presented to predict traffic consumption in cellular networks. The authors of [29]  
proposed a Gradient Similarity-based Federated Aggregation for Wireless Traffic Prediction (FedGSA). In [30] , 
decision trees (DT), random forest (RF), support vector machines (SVM), and ensemble learning (EL) are used to 
improve the prediction performance of the network. In [30] , the authors focused on the accurate prediction of the 
background traffic matrix (TM) of a common local area network (LAN) for Network traffic prediction. In [7] , an 
attention mechanism is employed to provide an end-to-end framework with two types of variables. In [30] , to 
predict the traffic in 5G cellular networks, it has been proposed that data analysis be performed in two parts 
using ensemble learning (EL).  

In [31] , the DEEXP method has been proposed to predict traffic consumption in the first term. In [32]  , a 
detailed prediction of a 5G network was proposed to build a smooth short-term memory traffic prediction model 
(SLSTM). In [29], a hybrid model based on a deep convolutional neural network is proposed, which combines 
unidimensional smoosparseg having single-exponential smoosparseg with long short-term memory (SES-
LSTM). In [33] , a hybrid method based on combining long-term, short-term memory (LSTM) and Gaussian 
process regression (GPR) was used to achieve accurate cellular traffic prediction at the single-cell level using an 
open cellular traffic dataset in the city of Milan, Italy. In [34]  the prediction of mobile data consumption traffic at 
the city level is made based on a deep learning approach for modeling the nonlinear dynamics of wireless traffic.  

In   [35]  a spatiotemporal attention-complexity network is proposed to predict the traffic of the cellular 
telecommunication network in the city. Considering the temporal correlation of cellular traffic, traffic data are 
independently modeled by hourly, daily, and weekly traffic components. The work of [36] describes a dynamic 
traffic slice model based on ML (ML-TADS). This model allows the management of traffic in the network properly 
- to provide it in such a way that its distribution is uniform, there is no congestion in one BS, and at the same 
time, traffic to another is zero. The work of [37] investigates the effectiveness of different ML models in terms of 
prediction accuracy and computational time cost. They analyze how to identify critical factors limiting the 
application of ML-based predictive models to support real-time services.  

In [38]   proposed a method to improve the traffic prediction accuracy of cellular BS home base using ML 
machine learning. This system combines the Naive Bayes classifier and HoltWinters ML model to improve traffic 
prediction in a cloud-based platform. In [39]  compared different supervised learning algorithms for traffic flow 
estimation. Based on the collected data, they evaluate several different prediction and classical regression 
algorithms, including SVR, Kernel Ridge, Decision Tree, Random Forest, and LSTM. In [40] proposes a federated 
learning (FL) framework for mobile traffic prediction in satellite-terrestrial networks, where AGCN and LSTM 
are used to train local models at base stations and aggregate a global model on a satellite edge server. This 
approach preserves data privacy and improves scalability but requires a distributed infrastructure and 
synchronization between nodes. In contrast, our method focuses on enhancing input data quality through the 
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integration of K-SVD, DWT, and GA with BiLSTM, leading to higher prediction accuracy and reduced 
computational complexity. Consequently, FL is beneficial for privacy-sensitive applications, while our approach 
is optimized for centralized, high-accuracy forecasting in Beyond 5G networks. 

In [41] introduces a multimodal deep learning framework for mobile traffic prediction by integrating CNN 
(ConvLSTM) and GNN (AGCN) to process SMS, call, and internet data. Their approach improves prediction 
accuracy by fusing grid-based and graph-based representations, outperforming ten baseline models. In contrast, 
our method focuses on sparse feature selection (K-SVD & DWT) and GA-based optimization to enhance data 
quality and reduce computational complexity. While multimodal models are beneficial for diverse applications, 
our approach is optimized for high-accuracy traffic forecasting in Beyond 5G networks.  Table 1 shows the 
comparison of related work. 

Table 1. Comparison of related work. 

Study 

Num-

ber 

Methods and Algorithms Research Objective Data Type Key Features and Innovations 

 ]29[ 
Gradient Similarity-based Fed-

erated Aggregation (FedGSA) 

Traffic consumption 

prediction in cellular 

networks 

Wireless 

network 

traffic data 

Use of federated data and gradient 

similarity for traffic prediction 

 ]30[ 

Decision Trees (DT), Random 

Forest (RF), Support Vector 

Machines (SVM), Ensemble 

Learning (EL) 

Improving network 

traffic prediction per-

formance 

Network 

traffic data 

Use of various algorithms to en-

hance prediction accuracy 

 ]42[ Ensemble Learning (EL) 

Accurate prediction of 

background traffic 

matrix in local area 

networks (LAN) 

LAN traffic 

data 

Focus on accurate prediction of traf-

fic matrix in local networks 

[7 ]  Attention Mechanism 
Traffic prediction for 

wireless networks 

Wireless 

network 

data 

Use of attention mechanism to 

model two types of variables in an 

end-to-end framework 

[43 ]  DEEXP Method 
Traffic consumption 

prediction 

Network 

traffic data 

Use of DEEXP method for traffic 

consumption prediction 

[31 ]  
Short-term Memory Traffic 

Prediction Model (SLSTM) 

Accurate short-term 

traffic prediction in 

5G networks 

5G network 

traffic data 

Use of short-term memory model 

(SLSTM) for smooth 5G network 

traffic prediction 

[32 ]  

SES-LSTM (Single-exponential 

smoosparseg + Long Short-

Term Memory) 

Traffic prediction 

combining CNN and 

LSTM 

Network 

traffic data 

Hybrid SES-LSTM model combin-

ing unidimensional smoosparseg 

with LSTM 

[44 ]  
LSTM + Gaussian Process Re-

gression (GPR) 

Accurate cellular traf-

fic prediction at the 

cell level 

Open cellu-

lar traffic 

dataset from 

Milan, Italy 

Combination of LSTM and GPR for 

high-accuracy traffic prediction at 

cell level 

[45 ]  Deep Learning Approach 

Mobile data consump-

tion prediction at the 

city level 

City-level 

mobile traf-

fic data 

Use of deep learning to model non-

linear dynamics of wireless traffic 

[33 ]  
Spatio-temporal Attention-

Complexity Network 

Cellular network traf-

fic prediction in cities 

Urban traf-

fic data 

Spatial-temporal attention mecha-

nism for predicting traffic in urban 

areas 

[34 ]  
ML-based Dynamic Traffic 

Slice Model (ML-TADS) 

Proper management 

of traffic in networks 

Network 

traffic data 

Dynamic traffic slicing model using 

machine learning for uniform traffic 

distribution 
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[35 ]  Various ML Models 

Prediction accuracy 

and computational 

time cost analysis 

Network 

traffic data 

Comparison of various ML algo-

rithms in terms of prediction accu-

racy and computational cost 

[36 ]  Naive Bayes + Holt-Winters 

Improving cellular BS 

traffic prediction accu-

racy 

BS traffic 

data 

Hybrid Naive Bayes and Holt-Win-

ters model for improved traffic pre-

diction in cloud-based platforms 

[37 ]  

Supervised Learning Algo-

rithms (SVR, Kernel Ridge, 

DT, RF, LSTM) 

Traffic flow estima-

tion 

Collected 

traffic data 

Comparison of supervised learning 

algorithms for traffic flow estima-

tion 

[40] 

federated learning (FL) frame-

work for mobile traffic predic-

tion 

Mobile traffic predic-

tion in satellite-terres-

trial integrated net-

works while preserv-

ing data privacy 

Real-world 

mobile traf-

fic dataset 

Uses FL to enhance privacy, trains 

local models at base stations, aggre-

gates a global model on a satellite 

edge server, improves scalability 

and privacy 

[41] 

multimodal deep learning 

framework for mobile traffic 

prediction by integrating CNN 

(ConvLSTM) and GNN 

(AGCN) 

Mobile traffic predic-

tion using a hybrid 

CNN-GNN approach 

for single-step predic-

tion 

Real-world 

mobile traf-

fic dataset 

Fuses SMS, call, and internet data, 

integrates grid-based and graph-

based representations, outperforms 

ten baseline models in occur 

 
Recent advancements in network traffic prediction have introduced a wide range of methodologies aimed at 

improving forecasting accuracy. However, these approaches often exhibit inherent limitations that hinder their 
practical applicability. Federated learning frameworks leveraging gradient similarity-based aggregation have been 
explored for wireless traffic prediction, demonstrating an improvement in feature learning capacity. Nevertheless, 
these methods frequently lack robustness in short-term forecasting due to the distributed nature of model updates 
and inherent constraints in data synchronization.  Ensemble-based machine learning paradigms, including Random 
Forest (RF), Support Vector Machines (SVM), and Decision Trees (DT), have been employed to enhance prediction 
performance. While these models facilitate multi-perspective feature learning, they remain susceptible to 
overfitting, particularly in dynamic network environments with high traffic variability. Deep learning techniques 
such as Convolutional Neural Networks (CNN) with attention mechanisms and the Kalman filter have been 
adopted to mitigate these shortcomings to capture intricate spatiotemporal dependencies in traffic data. Although 
these methods effectively integrate auxiliary contextual information, their performance deteriorates significantly in 
scenarios where such metadata is either sparse or unavailable.  Furthermore, Explainable Artificial Intelligence 
(XAI) and hybrid architectures, such as LSTM coupled with Gaussian Process Regression (GPR), have been 
introduced to enhance interpretability and predictive reliability. While these models offer superior adaptability for 
short-term forecasting, they often impose substantial computational overhead, limiting their feasibility for real-time 
deployment in large-scale networks. Additionally, augmented data-driven frameworks and cloud-based machine 
learning solutions have been proposed to improve generalization capabilities. However, these approaches are often 
constrained by latency issues, high memory consumption, and the necessity for extensive labeled datasets, making 
them less practical for high-throughput, real-time network scenarios. 

In contrast, the proposed method in this study effectively overcomes these limitations by integrating K-SVD, 
Discrete Wavelet Transform (DWT), Genetic Algorithm (GA), and BiLSTM to enhance predictive accuracy while 
maintaining computational efficiency. The K-SVD and DWT-based feature extraction module significantly reduces 
noise and dimensional redundancy, ensuring a more refined input representation. The GA-optimized sparse matrix 
formulation further enhances the sparsity structure of the dataset, facilitating robust pattern recognition with 
reduced complexity. Finally, the BiLSTM architecture, with its capability to model bidirectional dependencies in 
sequential data, allows for improved forecasting accuracy in highly volatile network traffic environments. 
Comparative analyses indicate that this hybridized approach achieves lower error margins (MAE, MSE, RMSE) 
while maintaining computational scalability. It is a more viable and efficient alternative for Beyond 5G network 
traffic prediction and resource optimization. 
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III.  THE PROPOSED METHOD 

The primary objective of this study is to propose an efficient and robust method for traffic forecasting in 5G and 
Beyond networks, leveraging deep recurrent neural networks. The methodology follows a structured sequence, 
beginning with data preprocessing using K-SVD, which enhances data quality by reducing noise and extracting 
significant components. Subsequently, a sparsity-driven approach is applied to traffic data using Discrete Wavelet 
Transform (DWT) and Genetic Algorithm (GA). This step is crucial for transforming raw network data into a 
compact and meaningful feature set, optimizing the representation of temporal patterns. The final stage involves 
employing a Bidirectional Long Short-Term Memory (BiLSTM) network, which effectively captures both short-term 
fluctuations and long-term dependencies in the traffic data, ensuring higher prediction accuracy compared to 
conventional models.  A key aspect of the proposed approach is the construction and utilization of a sparsity matrix, 
which plays a fundamental role in enhancing the performance of the predictive model. The sparsity matrix is 
formulated using GA to ensure an optimal balance between feature reduction and information preservation. This 
matrix refines the extracted features, eliminating redundant data while maintaining the structural integrity of the 
traffic patterns. By feeding the optimized sparse feature vectors into the BiLSTM network, the proposed method 
significantly improves prediction accuracy, reduces computational complexity, and mitigates the risk of overfitting. 
To further illustrate the methodology, Figure 1 provides a detailed block diagram of the proposed approach, and 
Tables 2 and 3 define key terms and mathematical expressions used throughout the study. 

1. PREPROCESSING 

Sparse decomposition (SD) is a relatively recent signal processing technique that has gained increased interest 
in mechanical defect diagnostics since it may capture the essential characteristics of the examined signal without 
assuming orthogonal base expansion. One of the main components of SD is dictionary generation, and there are 
two methods for creating an overcomplete lexicon: self-learning and predetermined. The self-learning SD dictionary 
approach typically has low interference resilience, whereas the preset dictionary SD technique often requires prior 
knowledge of the investigated signal. In recent years, a vast amount of literature has appeared to address the 
aforementioned issues. The Empirical Wavelet Transformation is enhanced To extract features, the dispersion-
guided experimental wavelet transform method is proposed and applied based on the SD idea. Furthermore, many 
self-learning SD approaches are computationally inefficient. To address the abovementioned issues, this study 
proposes a sparse display technique of K-means singular value decomposition (K-SVD) based on the classic K-SVD 
method, Applying the chase algorithm for sparse matching and an iterative method based on minimal atomic 
structure similarity. Through simulation and experiment verification, the suggested technique successfully captures 
the hidden aspects of the studied signal and has a greater computing efficiency. 

In recent years, a feature extraction and data compression technique called k-means singular value 
decomposition (K-SVD) has applications in a wide range of domains, including image processing and language 
recognition. K-SVD, which is also considered an extension of K-means, gives the sample data a sparse linear form. 
Much like a dictionary, a collection of overcomplete basis vectors is searched to get this data. [46], to improve the 
convergence rate of the dictionary atom and sparse coding, optimal matching and SVD are used together in KSVD. 
It causes them to keep pace with the update of dictionary atoms and sparse coefficients. To show the sparse signal, 
the KSVD algorithm is used to sparse the S coefficient as much as possible by finding the dictionary D as the 
following: 

Y =DS                       (1)  

Where D is the complete matrix, either the over-complete matrix (where There are more columns than rows in 
this instance) or the matrix with an equal number of columns, and Y is the trained signal. The column vectors 
(𝑠1, 𝑠2, … . 𝑠𝑁) in S correspond to Y. This means that Y is formed linearly under si from the columns of D and in the 
form of an equation that has been converted into a mathematical model [46] and it can be expressed as: 

min
D,X

{‖Si‖l0
} s. t. ‖Y − DS‖l2

2 ≤ ε                       (2)  

This equation could be rewritten as follows: 
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𝑚𝑖𝑛
𝐷,𝑋

‖𝑌 − 𝐷𝑆‖𝑙2

2  𝑠. 𝑡. ∀𝑖, ‖𝑆𝑖‖𝑙0
≤ 𝑇0                   (3)  

Equations (2) and (3) describe the sparse representation problem in the context of dictionary learning and signal 
approximation, which is a crucial step in K-SVD-based feature extraction.  Equation (2) represents an optimization 
problem where the objective is to minimize the ℓ₀ norm of the sparse representation Si, ensuring that only a limited 
number of nonzero elements are retained in the representation. The constraint ‖𝑌 − 𝐷𝑆‖𝑙2

2  enforces that the 
reconstructed data DS  should approximate the original data Y within an allowable error margin ε, measured using 
the ℓ₂ norm (which represents the Euclidean distance between the original and reconstructed data).  Equation (3) 
reformulates this problem by shifting the optimization focus to minimizing the ℓ₂ norm of the reconstruction error 
while maintaining a strict sparsity constraint ‖𝑆𝑖‖𝑙0

≤ 𝑇0 for all columns i. Here, 𝑇0 represents the maximum 
allowed number of nonzero elements in each sparse representation vector 𝑆𝑖, ensuring that the solution remains 
computationally efficient while preserving essential structural information. This formulation is particularly useful 
in sparse coding and compressed sensing, where maintaining a balance between accuracy and sparsity is essential 
for effective feature extraction and data compression. 

Table 2. Description of abbreviation. 

Term in use Description 

ACC Accuracy 

ADAM Adaptive Moment 

ARIMA Autoregression integral moving average model 

BiLSTM Bidirectional LSTM 

BN Bayesian networks 

DCT discrete cosine transforms 

DWT Discrete wavelet transforms 

FNN Fuzzy neural networks 

GPR Gaussian process regression 

HPF High pass filter 

KNN K-nearest neighbors 

LAN Local area network 

LPF Low pass filter 

LSTM Long-term short-term memory 

MAE Mean absolute Error 

MSE Mean square error 

QoS Quality of Service 

RBFNN Radial basis function neural networks 

RMSE Root Mean Square Error 

RNN Recurrent Neural Networks 

SD Sparse decomposition 

SVM Support vector machines  

SVMR Support vector machine regression 

SVR Support vector regression 

TM Traffic matrix 

WNN Wavelet neural networks 

Table 3. Description of terms in formula. 

Term in use Description 

D complete matrix 

Y trained signal 

S column vectors (s1, s2, ...si, …, sN) 
𝑇0 Threshold of optimization 
𝑙0 Zero norm 

𝑠𝑖
𝑇 Transpose column vectors 
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di represents the ith column of D 

EK Error  
𝑊𝑋(𝑆,𝑈 ) Output of wavelet transform 

𝑋(𝑡) Input data 𝑥 ∈ 𝑅𝑁+1 
𝛹𝑠,𝑢

∗  Mother wavelet 

𝑎0
𝑗
 transfer parameter  

𝐶𝐷𝑗(𝑘) detail coefficients 
𝐶𝐴𝑗  approximation coefficients  

Ek residual error  
𝜑 Sparse matrix 
𝜆 Regulation parameter  

𝛷𝑥 Random Gaussian, random sparse binaryand random Bernoulli matrix 
𝑆𝑅 sparse rate 
𝑑𝑡 predicted data 
𝑦𝑡 target data 

𝑇𝑁 True negative 
𝑇𝑃 True posetive 
𝐹𝑁 False negative 
𝐹𝑃 False posetive 

 

70% data

Preproces
sing 

Time series of Traffic original data

Time series of Traffic original data

Testing by 30% data

DWT

KSVD 

Sparsity 
By GA

Evaluation 
 

FIGURE 1. Block diagram of proposed method. 
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One of the non-deterministic-time polynomial-hard (NP-Hard) problems are to find the global optimal 
dictionary D, If the ideal answer is just gradually approached, giving the trained data Y. l_0 is zero norm. Generally, 
there are two stages of dictionary update and sparse coding in KSVD. 

We choose a dictionary D for sparse coding in order to show the sparse data Y. The sparse coefficients S of the 
training data Y in the dictionary D may be found by using optimum matching tracking. As a result, DS may be 
thought of as the total of the product of each matching row in S and the matching column in D, which is stated as 
follows: 

𝐷𝑆 = ∑ 𝑑𝑖𝑠𝑖
𝑇𝐾

𝑖=1                                                                          (4)  

Where 𝑠𝑖
𝑇symbolizes the ith row of S, and di symbolizes the ith column of D. Dictionary D is updated by going 

over each column individually. Assuming S and D are constant when updating the kth column dk in D and the kth 
row 𝑠𝑖

𝑇in S, the following equation applies. 
In (5), it is only to adjust dk and 𝑠𝑘

𝑇to make the error between EK and 𝑑𝑘𝑠𝑘
𝑇 as small as possible    [47 ] . In the 

suggested approach, Y data is sparsely shown using a simple dictionary D that is initially established. The optimum 
matching pursuit might be applied to get the sparse coefficients S of the dictionary D's training data Y. The following 
equation may be used to define DS, which is now the total of the product of the corresponding row in S and each 
column in D: 

 

𝑆 = ∑ 𝑑𝑖𝑠𝑖
𝑇

𝐾

𝑖=1

                                                                                                                                               (6) 
 

Where di stands for D's ith column, and 𝑠𝑖
𝑇 rsymbolizes S's ith row. Dictionary D is updated column by column. 

Assume first that S and D are constant, and that the kth row of D's column dk and the 𝑠𝑘
𝑇  in S are modified, the 

following equation is present: 
 

‖𝑌 − 𝑑𝑠‖𝑙2
2 = ‖𝑌 − ∑ 𝑑𝑖𝑠𝑖

𝑇

𝐾

𝑖=1

‖

𝑙2

2

= (𝑌 − ∑ 𝑑𝑖𝑠𝑖
𝑇

𝑖≠𝑘

) − 𝑑𝑘𝑠𝑘
𝑇‖𝑙2

2 = ‖𝐸𝑘 − 𝑑𝑘𝑠𝑘
𝑇‖𝑙2

2         (7) 
 

In equation (12), only 𝑑𝑘  and 𝑠𝑘
𝑇  should be adjusted so that the error between E_k and 𝑑𝑘𝑠𝑘

𝑇  is as tiny as 
feasible. The main stages of KSVD are as follows: 
• Step 1: Initially, the initialization matrix is set. 𝐷0 ∈ 𝑅𝑁×𝐾 and the initial iteration value J = 1 
• Step 2: Sparse coding involves solving S with the optimum matching tracking technique, obtaining a sparse 

coefficient si to represent yi, and calculating the error ε that satisfies equation (12). Modify it. 
• Step 3: Update the dictionary 

• Definition of the sample used  𝑤𝑘 = {𝑖|1 ≤ 𝑖 ≤ 𝑁, 𝑠𝑘
𝑇(𝑖) ≠ 0} 

• Calculation of residual error Ek and estimate 𝐸𝑘 = 𝑌 − ∑ 𝑑𝑖𝑠𝑖
𝑇

𝑖≠𝑘 . 
• Restricting by choosing the columns for wk, Ek, then balancing the non-zero values in Ek using 𝑠𝑖

𝑇, then 
the new EK is obtained, denoted by 𝐸𝐾

𝑅  . 
• Decomposing 𝐸𝐾

𝑅 = ∆𝑉𝑇 using SVD and updating the dictionary atom 𝑠̃𝑘
𝑇 = 𝑑̃𝑘 = 𝑢1 , ∆[ 1,1], where D is 

an SVD of 𝐸𝐾
𝑅   , the largest value The singular is denoted by ∆[1,1], v1, v1 is the right vector V's singular 

matrix's first column, while the left vector U's singular matrix's first column is u1. 
• Update J = J + 1. 

• Step 4: Output 

• DJ learned dictionary obtained. 

 

‖𝑌 − 𝐷𝑆‖𝑙2

2 =‖𝑌 − ∑ 𝑑𝑖𝑠𝑖
𝑇𝐾

𝑖=1 ‖𝑙2

2 = ‖(𝑌 − ∑ 𝑑𝑖𝑠𝑖
𝑇

𝑖≠𝑘 ) −  𝑑𝑖𝑠𝑖
𝑇‖𝑙2

2 = ‖𝐸𝐾 − 𝑑𝑘𝑠𝑘
𝑇‖𝑙2

2                  (5)  
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2. SPARSE FEATURE SEXTRACTION 

The combination of Sparse Decomposition (K-SVD), Genetic Algorithm (GA), and BiLSTM was chosen due to 
its complementary strengths in feature extraction, optimization, and sequential modeling, particularly for non-
stationary network traffic data. Traditional methods like Fourier Transform fail to capture localized variations in 
such dynamic datasets, whereas Discrete Wavelet Transform (DWT) enables multi-resolution time-frequency 
analysis, making it an ideal preprocessing step. DWT decomposes traffic data into different frequency components, 
allowing for more effective extraction of both short-term fluctuations and long-term trends. In this study, orthogonal 
wavelet filters from the Daubechies family were selected for their optimal smoothness and regularity, ensuring 
improved denoising and feature preservation in preprocessed network data. 

Once the essential features are extracted, the sparse matrix representation, generated through K-SVD and 
optimized using GA, plays a crucial role in enhancing network traffic prediction accuracy. Unlike conventional 
feature selection methods that rely on predefined statistical measures, the sparse matrix adaptively retains the most 
relevant traffic patterns while eliminating redundant information, thereby reducing data dimensionality without 
loss of critical temporal dependencies. GA was specifically chosen for its superior capability in discrete optimization 
tasks, effectively tuning the sparse representation to maximize feature efficiency compared to traditional methods 
like PSO or Simulated Annealing. Finally, BiLSTM serves as the predictive model, leveraging its bidirectional 
structure to learn complex dependencies in sequential traffic data, significantly improving forecasting accuracy and 
model stability. Comparative experiments demonstrate that this integration not only enhances predictive 
performance by reducing Mean Squared Error (MSE) but also lowers computational complexity, making the model 
more robust and efficient for real-world 5G network traffic forecasting. 

  Sparse matrix construction: If 𝑥 ∈ 𝑅𝑁+1  it is a vector and is considered as recorded data after pre-processing, 
where the number of N samples is desired in a time interval, the X vector is thinned by the matrix using the CS 
method. which is the injection matrix or projection/sensing matrix 𝜑 ∈ 𝑅𝑀+1. which 𝜑 is expressed as follows: 

𝑦 = 𝜑𝑥                                    (8)  

Which 𝑦 ∈ 𝑅𝑀×1   is the same data collected. The sparse rate will be defined as the following relationship. 

𝑆𝑅 = 1 − (
𝑀

𝑁
)                               (9) 

 

Data X is a sparse or t sparse able data. In the time domain, if it can be reconstructed with a high probability 
(with the smallest line), in fact the data is thinned, y will be as follows: 

𝑥 = 𝑚𝑖𝑛 ‖𝑦 − 𝜑𝑥‖2
2

𝑥
⬚

𝑋
+ 𝜆‖𝑥‖1                (10) 

 

which 𝜆  in this relation is the Regularization  matrix and ‖. ‖𝑃
⬚

(𝑃 ≥ 1)  is a real number which is defined as 
follows. 

‖𝑎‖𝑃 = (∑ |𝑎𝑖|𝑝𝑛
𝑖=1 )1/𝑝                        (11)  

Traffic data is inherently dense and highly dynamic, meaning it does not exhibit natural sparsity in the time 
domain. However, sparse representations can be effectively obtained by transforming the data into alternative 
domains where underlying patterns become more distinguishable. Techniques such as Discrete Wavelet Transform 
(DWT) and Discrete Cosine Transform (DCT) are widely used for this purpose, as they enable multi-resolution 
decomposition and capture localized variations in the data. In this study, DWT is chosen as the primary 
transformation technique due to its superior ability to separate noise from meaningful traffic patterns while 
preserving both high-frequency fluctuations and long-term dependencies. Once the traffic data is transformed into 
the wavelet domain, sparsification is applied to remove redundant information, enhancing the efficiency of 
subsequent processing steps. If the sparse matrix is constructed as the base representation, the relationship between 
the signal vector and the reconstructed data in matrix form X can be formulated as follows: 
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𝑋 = 𝑚𝑖𝑛‖𝑦 − 𝛷𝑥‖𝑥
⬚

2
2 + 𝜆‖𝜓𝑥‖1                 (12)  

Random Gaussian matrices, random sparse binary matrix and random Bernoulli matrix are three commonly 
used matrices for 𝛷𝑥 and 𝜆 is Regulation parameter. In order for the retrieval accuracy to increase, the correlation 
between and should be low. random matrices with independent definite linear distribution i.i.d. Like Gaussian 
distribution or bivariate, they have the most. Although generating the Gaussian matrix and applying it to traffic 
data is computationally complex  [48 ] . Also, its optimal selection is very effective in forecasting, and by choosing a 
random matrix, it is not possible to get a good result in traffic forecasting. Thus, a genetic method is used in this 
study to determine the matrix. 

In this study, the Genetic Algorithm (GA) was chosen for sparse matrix optimization due to its superior 
performance in discrete and combinatorial optimization problems compared to Particle Swarm Optimization (PSO) 
and Simulated Annealing (SA). GA efficiently explores the search space using mutation and crossover operations, 
preventing premature convergence and enhancing feature selection for traffic prediction. Unlike PSO, which often 
suffers from early convergence to local optima, and SA, which relies on a localized search trajectory, GA maintains 
population diversity and ensures a more comprehensive exploration of possible solutions. Additionally, GA is 
particularly suitable for multi-objective optimization, which is essential in balancing sparsity constraints and 
predictive accuracy in this study [49]. By leveraging GA, the sparse matrix representation enhances BiLSTM’s 
learning efficiency, leading to improved accuracy, reduced computational cost, and greater generalization 
capability in real-world network traffic forecasting.  In the genetic algorithm, Genes are elements that contain codes 
for variables. Chromosomes, which are collections of genes, are the solutions to the issue. The elements of this paper 
are the number of ones that should be placed in a sparse matrix in such a way that the traffic prediction is done with 
the lowest RMSE. In each repetition of the genetic algorithm, the values of 1 are moved along the sparse matrix, as 
a result, the values of the genes can change, this value can be zero and one in this paper. Gene values are altered 
and a new chromosome is created by using mutation and crossover. (new sparse matrix) is created . Table 4 shows 
an example of chromosomes to create a sparse matrix. The length of the sparse matrix is variable and can change 
based on the conditions. Since the purpose of this article is to provide a practical example, the length of chromosome 
8 is considered. In Table 4 the chromosomal representation used for constructing a sparse matrix in the proposed 
method. Each row represents a chromosome, where binary values (0s and 1s) indicate the presence or absence of 
specific elements in the sparse matrix. The genetic algorithm optimizes these chromosomes to achieve the most 
efficient sparse representation, ensuring that the selected structure enhances feature extraction and network traffic 
prediction. By iteratively evolving these chromosomes, the algorithm minimizes reconstruction error while 
maintaining sparsity constraints. 

Table 4. Chromosomes to create a sparse matrix. 

C1 C2 C3 C4 C5 C6 C7 C8 

0 0 1 1 0 0 1 0 

0 1 0 1 0 0 1 0 

1 0 0 0 0 1 0 1 

 
To accelerate convergence and accomplish the in-tended outcomes, it is very important to consider the initial 

population. In thin matrices, a parameter called SR thinness rate is defined. The sparseness rate of an operation 
indicates the number of ones in a sparse matrix. 

𝑆𝑅 =
# 𝑜𝑓 𝑜𝑛𝑒

𝑙𝑒𝑛𝑔𝑡ℎ𝑠 𝑜𝑓 𝑚𝑎𝑡𝑟𝑖𝑥
                                    (13) 

 

To ensure the optimal selection of the sparse matrix, the genetic algorithm evaluates candidate solutions based 
on their impact on predictive accuracy, prioritizing matrices that yield the lowest MSE values. The regularization 
parameter λ plays a crucial role in balancing sparsity and feature retention, where overly sparse matrices may result 
in information loss, whereas insufficient sparsity may introduce redundancy. The evolutionary nature of the 
algorithm allows it to dynamically adjust SR (sparsity rate) values, ensuring that the final matrix structure aligns 
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with the intrinsic patterns of the traffic data. Experimental analysis reveals that tuning SR in a controlled manner 
leads to a significant reduction in overfitting while enhancing generalization performance, making this approach 
particularly suitable for real-time network traffic forecasting in Beyond 5G environments  .It is defined by 
considering the thinness rate of the initial population.   In Table 1, 𝑆𝑅 =

3

8
  which means the ratio of number of 

genes with a value of zero to the number of genes with a value of one. The starting population is produced using 
the length of the sparse matrix. In the genetic algorithm, two generations are combined to produce the next 
generation. The roulette cycle is used in this article to select parents. Then the Crossover operator is randomly 
created in the first step in selecting or generating the sparse matrix. For this purpose, half of the matrix is removed 
from each of the parents in this research. In other words, half the length of the chromosome is removed. Parents are 
two parental chromosomes which are separated into sections on the left and right. The right part of one chromosome 
and the left part of another chromosome together forms a child chromosome. The mutation operator has been used 
to ensure random changes in the chromosome. Since the generated chromosomes should not be similar after the 
Crossover operator, a thin graph has been used. Finally, fitness is defined taking into account the Mean Square Error 
(MSE) of the least square distance. The lower the MSE value. That is, the genetic algorithm has been more successful 
in producing the sparse graph matrix. The MSE value is obtained directly from the predicted values of the data 
volume and it can be expressed as: 

𝑀𝑆𝐸 =
1

𝑁
∑ (𝑑𝑡 − 𝑦𝑡)2𝑁

𝑡=1                           (14) 

Where dt, yt and N denote the predicted data, the target data and all the data in a window respectively. uring 
the sparsification process, the genetic algorithm iteratively adjusts the sparse matrix configuration to minimize the 
MSE, ensuring that the transformed and thinned data retain sufficient structural integrity for accurate forecasting. 
A lower MSE value indicates that the sparsified dataset still effectively represents the original traffic patterns, 
thereby preventing significant information loss while reducing the dimensionality of input data. By incorporating 
MSE as the fitness function in the optimization process, the algorithm ensures that only the most relevant features 
are retained, contributing to enhanced predictive performance and computational efficiency in the BiLSTM-based 
forecasting model. 

3. FORECASTING WITH LSTM 

Now, the bidirectional LSTM (BiLSTM) model is suggested to enhance the forecasting capabilities of LSTM. This 
article forecasts traffic using a developed BiLSTM. One network receives the input sequence in regular chronological 
order, while another network receives it in reverse chronological order, thanks to a deep learning technique. At 
every time step, the two networks' outputs are consecutive. BiLSTM's stacked layer design provides great prediction 
accuracy by enabling the acquisition of both forward and back-ground Each time step provides information about 
the sequence. Memory units in the BiLSTM model play a crucial role in accurate traffic prediction for Beyond 5G 
networks. These units enable the model to capture long-term dependencies in network traffic data and retain 
important information from past time steps for use in future predictions. In Beyond 5G networks, where traffic 
patterns are constantly changing and complex dependencies between data points exist, memory units allow 
BiLSTM to store and process long-term information. This capability helps the model make accurate predictions by 
effectively simulating both short-term and long-term traffic variations. As a result, BiLSTM, with its memory units, 
is able to provide better predictions for highly complex networks like 5G and beyond. 

IV.  DATA ANALYSIS 

In this study, the hyperparameters of the BiLSTM model were systematically optimized using the Grid Search 
method to enhance prediction accuracy and model stability. BiLSTM is specifically chosen for its ability to capture 
long-term dependencies within sequential data by processing information in both forward and backward 
directions, making it particularly effective for network traffic forecasting. To ensure optimal performance, five 
layers were employed for training the classifier. The Grid Search approach was utilized to determine the most 
effective hyperparameters by evaluating multiple parameter combinations and selecting those that yielded the best 
performance in terms of MSE, RMSE, MAE, and ACC. The following configurations were identified as optimal: 
• Maximum number of iterations: Set to 350, allowing the model to refine weight updates over multiple training 

cycles while maintaining computational efficiency. 
• Batch size: A mini-batch size of 80 was selected to strike a balance between computational cost and training 

stability, ensuring effective gradient updates. 
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• Initial Learning Rate: Optimized at 0.01, accelerating convergence while preventing divergence or unstable 
updates. 

• Gradient Threshold: Adjusted to 1 to prevent gradient explosion and maintain numerical stability during 
training. 

• Training Monitoring: "Plots" was set to "Training Progress", enabling real-time visualization of the loss function 
and validation metrics to assess model convergence and detect overfitting. 

These optimized hyperparameters, derived from the Grid Search process, significantly improved the model’s 
predictive performance by ensuring stability, faster convergence, and enhanced generalization to unseen data. The 
final settings are summarized in Table 5, detailing the classifier’s configuration.  This model was trained using an 
ADAM-based ap-proach. A deep learning model may be trained more quickly by using ADAM, an alternate 
optimization technique for stochastic gradient ratios. ADAM was selected for this work because it combines the 
benefits of the RMSProp and AdaGrad algorithms. ADAM facilitates better management of noise, random 
gradients, and sparse data. Large data or parameter difficulties can be solved with the optimizer's computational 
efficiency in BiLSTM model training.  It has also been used to simulate and predict the traffic of other neural 
networks. These networks are listed in table 6. The training time of BiLSTM is higher compared to traditional models 
like RNN and LSTM due to its bidirectional processing and increased number of parameters. While this results in 
a longer computational time, it significantly enhances the model’s ability to capture long-term dependencies and 
complex temporal patterns, leading to higher predictive accuracy. Compared to simpler models such as MLFNN 
and WNN, which have lower computational complexity, BiLSTM requires more processing power and memory 
due to its recurrent nature. However, the trade-off between computational cost and prediction accuracy is justified, 
as BiLSTM consistently outperforms other models in terms of error reduction (MSE, RMSE, MAE) and stability in 
forecasting performance. 

Table 5. Used BiLSTM settings. 

Parameter Value 

Educational rate 0.01 

Optimization method ADAM 

The highest number of ipak 350 

The smallest package size 80 

The number of hidden units 100 

Gradient threshold 1 

Executive environment Automatically 

hidden layers 1*5 

The length of the sequence The longest 

shuffle once 

Activity function Sigmoid  

Table 6. Neural network type and setting up. 

Refer-

ence  

Neural network Abbrevia-

tion 
Setting up 

[50] 
Multilayer feed for-

ward neural  networks 

MLFNN Consideration is given to multi-layer perceptron feed-forward neural networks 

having one hidden layer and fifteen hidden layer neurons. 

[5] 
Recurrent  neural net-

works 

RNN 15 hidden layer neurons are thought to exist.  

[51] long short-term memory LSTM the number of hidden layer neurons is considered 15 

[52] 
Radial basis functions 

Neural networks. 

RBFNN Gaussian function and the educational method is supervised 

[53] 
Wavelet neural net-

works 

WNN wavelet neural networks and the Mexican hat. The wavelet function is employed 

for the activity function of the neurons with a hidden layer of 15 neurons. 

[54] 
Fuzzy neural networks FNN fuzzy neural networks use the Gaussian membership function and the number 

of 15 neurons in a hidden layer 
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The 5G Mobile Network Data (5G-ND) dataset is a real-world traffic dataset specifically designed for analyzing 
and evaluating 5G mobile networks [55]. It contains comprehensive traffic data collected from telecom operators, 
base stations, and wireless network infrastructures, making it a valuable resource for studying network 
performance, traffic patterns, and optimization strategies in 5G environments.  This dataset includes key network 
metrics such as data transmission rates, end-to-end latency, packet loss, network congestion levels, and Quality of 
Service (QoS) parameters, enabling researchers to assess network efficiency under various real-world conditions. It 
also supports diverse scenarios, including urban, rural, and industrial 5G deployments, allowing for in-depth 
analysis of user behavior, resource distribution, and adaptive network management. Additionally, time-stamped 
and location-based data enable the examination of spatial and temporal traffic variations, facilitating better insights 
into network scalability and dynamic load balancing.  The 5G-ND dataset is particularly suitable for machine 
learning-based traffic prediction, as it provides rich data for training and evaluating deep learning models such as 
BiLSTM, CNN, and Transformer architectures. By leveraging this dataset, researchers can develop and validate 
intelligent traffic forecasting models, improving real-time traffic management and resource allocation in next-
generation 5G networks.     70% of the entire data is utilized for training, with the remaining 30% for testing. The 
gathered findings determine if an algorithm or approach is suitable for prediction. The following quantitative 
comparison was done to assess these algorithms. Mean Square Error, Root Mean Square Error, and Mean Absolute 
Error (MAE) [30]. Root means square error (RMSE): The smaller this square root error number is, it indicates that 
the pre-diction result is more successful and it can be ex-pressed as: 

𝑀𝑆𝐸 = √
1

𝑁
∑(𝑑𝑡 − 𝑦𝑡)2                             (15)  

Where Ir is the initial available value and 𝑑𝑡  is the obtained value. N dimensions are the vector of desired 
values.  Mean Square Error (MSE): The smaller the squared error number, the more successful the prediction result 
is and it can be expressed as: 

𝑀𝑆𝐸 =
1

𝑁
∑(𝑑𝑡 − 𝑦𝑡)2                           (16)  

Where, 𝑑𝑡  is the initial available value and 𝑦𝑡is the obtained value. N dimensions are the vector of desired 
values. Mean absolute error (MAE): This standard calculates the absolute error in the corresponding values in If 
and Ir: If is the obtained values and Ir is the original values calculated in the proposed method. 

𝑀𝐴𝐸 = ∑ |𝑑𝑡 − 𝑦𝑡|𝑚
𝑖=1                                  (17)  

In this regard, Ir is the initial available value and if is the obtained value. Obviously, the smaller this number is, 
the better the result. Prediction accuracy: The prediction accuracy criterion is a common criterion in traffic data 
volume prediction. 

ACC=
𝑇𝑁+𝑇𝑃

𝑇𝑁+𝐹𝑁+𝐹𝑃+𝑇𝑁
                                                                         (18)  

1. COMPARISON OF THIN MATRICES 

In order to evaluate the sparse graph matrix, the results of BiLSTM were evaluated with random distribution 
matrix graph and Gaussian distribution in the dis-cussed criteria of MAE absolute error, ACC accuracy, MSE square 
root mean error, and RMSE root mean square error. Tables 2 to 4 show this comparison for all three signals. As it 
can be seen from the comparison of the results, the LSTM method has predicted much better results in the selection 
of the proposed thin feature based on the genetic algorithm. The reason for this is the use of the MSE objective 
function in the genetic algorithm in order to select the best values for prediction, as well as taking into account the 
spatial and temporal dependence of the data. Also, Gaussian distribution function has better results than random 
distribution. This superiority can be due to the normal distribution of the recorded data of the signals. 

Table 7. Comparison of evaluation criteria in BiLSTM in the first signal. 

METHOD MAE RMSE MSE  ACC 

Random 14.2325 22.1525 4.7014  94.25 

Gaussian 13.2587 19.0225 4.1041  95.74 

proposed 12.8987 18.2369 4.2596  97.25 
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Table 8. Comparison of evaluation criteria in BiLSTM in the second signal. 

METHOD MAE RMSE MSE  ACC 

Random 15.9742 21.2987 4.23698  94.25 

Gaussian 13.4573 19.8523 4.4589  95.36 

proposed 12.0289 18.1489 4.5558  98.00 

Table 9. Comparison of evaluation criteria in BiLSTM in the third signal. 

METHOD MAE RMSE MSE  ACC 

Random 15.2563 19.2631 4.2013  95.23 

Gaussian 13.6359 19.2798 4.4236  95.63 

proposed 12.2531 18.2589 4.2896  97.91 

 
Three signals in the intended networks have the re-quired predictions given by the suggested technique. Figure 

2 shows the MAE in the prediction and evaluation of all seven neural networks and in three signals. The MAE 
performance comparison across different neural network models demonstrates the superior predictive accuracy of 
the proposed BiLSTM-based approach. The results indicate a notable reduction in absolute error when employing 
BiLSTM, highlighting its capability to capture complex temporal dependencies more effectively than conventional 
models. Additionally, networks such as RNN and LSTM exhibit moderate error levels, while traditional 
architectures like MLFNN and WNN display significantly higher error values, suggesting limitations in handling 
dynamic traffic fluctuations. The inclusion of error bars further emphasizes the stability and robustness of the 
BiLSTM model, indicating lower variance and improved generalization compared to other methods.    

Similar to Figure 3 of MSE diagram, the MSE performance evaluation highlights the significant reduction in 
squared error achieved by the BiLSTM model compared to other neural network architectures. The results 
demonstrate that BiLSTM consistently outperforms traditional models such as MLFNN, WNN, and FNN, which 
exhibit higher error levels, indicating limitations in capturing complex temporal dependencies in traffic data. 
Additionally, while LSTM and RNN achieve relatively lower errors, BiLSTM further enhances predictive accuracy 
by leveraging its bidirectional processing capability. The presence of error bars emphasizes the stability and lower 
variance of BiLSTM, reinforcing its robustness and generalization ability in real-world scenarios.  

Figure 4 shows the RMSE in the simulations. The RMSE performance comparison reveals the superiority of the 
BiLSTM model in minimizing root mean squared error compared to other neural networks. The results indicate 
that traditional models such as MLFNN, WNN, and FNN exhibit higher RMSE values, suggesting lower predictive 
reliability when handling network traffic fluctuations. While LSTM and RNN show relatively improved 
performance, BiLSTM achieves the lowest RMSE, reinforcing its ability to capture both short-term variations and 
long-term dependencies in time-series data. Additionally, error bars demonstrate lower variance in BiLSTM’s 
predictions, confirming its robustness and stability over multiple evaluation scenarios. 

Figure 5 shows the pre-diction accuracy of the proposed method in different networks. The accuracy comparison 
highlights the superior classification performance of the BiLSTM model compared to other neural networks. The 
results indicate that traditional models such as MLFNN, WNN, and FNN exhibit lower accuracy, reflecting their 
limitations in effectively capturing temporal dependencies. While CNN, RNN, and LSTM demonstrate improved 
accuracy, BiLSTM achieves the highest accuracy across all evaluation scenarios, reinforcing its ability to learn 
complex patterns in network traffic data. Additionally, the error bars indicate minimal variance in BiLSTM’s 
performance, confirming its stability and robustness in predictive modeling. 

The lower the numerical value of the MAE absolute mean error, the better the prediction result. Based on the 
results presented in Figure 2-4, the MAE value of the BiLSTM neural network has recorded a lower value compared 
to other methods. Although convolutional neural network LSTM has recorded similar results to BiLSTM, albeit 
weaker, but it is su-perior compared to RNN. Perhaps the superiority of LSTM method compared to RNN can be 
ignored considering the computational complexity. It should be mentioned that the amount of computing involved 
in BiLSTM is acceptable compared to LSTM. The smaller the RMSE and MSE values are, the better the prediction 
result. Based on the results presented in Figure 4, the RMSE value of the BiLSTM neural network has recorded a 
lower value compared to other methods. Although LSTM has recorded similar results to BiLSTM and although it 
is weaker compared to BiLSTM, they are superior compared to other networks. The memory unit in the BiLSTM 
technique is what makes it better than other approaches. In similar neural network methods including MLFNN, 
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FNN, WNN and RBFNN, the activity function plays an essential role in the prediction output. Therefore, the 
RBFNN method is better than other similar methods. The reason for the superiority is the type of Gaussian radial 
basis function used in prediction in the neural network. As expected, the proposed BiLSTM neural network has 
obtained the best result in accuracy by processing the data with the help of the proposed method. The reason for 
the superiority of combining two neural networks and strengthening the memory unit is also the use of thin matrix 
in feature selection for prediction. The LSTM neural network is also at the next stage because of the memory. Other 
methods based on neural network are in later stages. 

 

FIGURE 2. Comparison of MAE in various networks and prediction of all three traffic data signals. 

 

FIGURE 3. Comparison of MSE across networks and prediction in all three traffic data streams. 
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MAE 1 34.88 33.39 30.23 29.39 25.3 19.6 14.6

MAE2 33.53 26.11 24.56 23.65 21.77 20.66 15.91

MAE 3 29.44 25.645 23.23 23.89 23.58 21.32 15.35
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FIGURE 4. RMSE comparison across several networks and forecasting for each of the three traffic data signals. 

 

FIGURE 5. Comparison of the three traffic data signals' predictions and accuracy (ACC) across several net-

works. 

The paired t-test analysis was conducted to statistically validate the superiority of the proposed BiLSTM model, 
which integrates K-SVD, DWT, GA, and BiLSTM for enhanced network traffic prediction. The results across four 
evaluation metrics (MAE, MSE, RMSE, and Accuracy) demonstrate that BiLSTM consistently outperforms all 
competing models, including LSTM, RNN, RBFNN, FNN, WNN, and MLFNN, with statistically significant 
improvements. For the MAE metric (Figure  6 A), all p-values are below 0.05, confirming that BiLSTM significantly 
reduces absolute prediction errors compared to other models. In the MSE metric (Figure 6 B), BiLSTM maintains a 
statistically significant advantage over all models, including LSTM, ensuring superior error minimization. Similarly, 
in the RMSE metric (Figure 6 C), the p-values for all comparisons remain below 0.05, validating BiLSTM’s robust 
performance in reducing squared error deviations. Finally, in the Accuracy metric (Figure 6 D), BiLSTM achieves 
significantly higher accuracy than all other models, with all p-values below 0.05, confirming its superior 
generalization capability. These statistical results reinforce that the proposed BiLSTM-based approach delivers a 
substantial and statistically significant improvement in network traffic prediction, making it a more efficient, 
accurate, and reliable choice compared to traditional neural network models. 
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FIGURE 6. Paired t-test results for MAE (A), MSE (B), RMSE (C), and Accuracy (D). The proposed BiLSTM 

model shows statistically significant improvements over all competing models (p < 0.05). 

V.CONCLUSION 

 In this study, a memory-enhanced deep learning approach using Bidirectional Long Short-Term Memory 
(BiLSTM) is proposed for cellular network traffic prediction. The proposed method integrates K-SVD for data 
preprocessing, Discrete Wavelet Transform (DWT) for feature extraction, and a Genetic Algorithm (GA) for sparse 
matrix construction, ensuring optimal feature selection. The sparse matrix representation is evaluated across 
multiple neural network architectures, including MLFNN, WNN, FNN, RBFNN, RNN, LSTM, and BiLSTM, where 
BiLSTM demonstrates superior predictive performance. The paired t-test analysis confirms that the performance 
improvements achieved by BiLSTM over conventional models are statistically significant (p < 0.05) across multiple 
evaluation metrics, including MAE, MSE, RMSE, and Accuracy. The enhanced predictive capability of BiLSTM is 
attributed to its bidirectional memory units, which effectively capture long-term dependencies and complex 
temporal patterns in network traffic.  Furthermore, the practical applicability of the proposed model in real-world 
5G networks is discussed, emphasizing its potential for adaptive traffic management and resource allocation. The 
study also highlights key deployment challenges, such as computational complexity, real-time processing 
constraints, and data availability, providing directions for future research in scalable and distributed deep learning-
based traffic forecasting. The results validate BiLSTM as an efficient, accurate, and statistically reliable solution for 
next-generation cellular traffic prediction. 
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