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ABSTRACT: This study explores the integration of artificial intelligence (AI) into mobile learning to 

enhance programming education at the higher education level. Specifically, it presents the design, 

development, and evaluation of a mobile application that leverages ChatGPT's capabilities to support C# 

programming instruction. The primary objective was to create a user-friendly AI-powered learning tool that 

delivers personalized assistance and real-time debugging support. Adopting a user-centered design 

approach, the application was developed with active input from students and educators. To assess its 

impact, the study employed a mixed-method evaluation framework involving both quantitative and 

qualitative data. A comparative analysis between experimental and control groups was conducted to 

determine the app's effectiveness. Findings revealed a statistically significant improvement in the 

performance of students using the application (p < 0.001), with medium to large effect sizes and high 

statistical power (power > 0.95). Regular app usage was positively correlated with technical proficiency and 

favorable psychometric outcomes, indicating both educational and motivational benefits. The results 

underscore the potential of AI-integrated mobile platforms to transform programming education by offering 

personalized, adaptive learning experiences. This research contributes a practical model for incorporating 

AI into mobile programming instruction and demonstrates its capacity to enhance learning outcomes and 

user engagement. The proposed solution not only improves students’ programming skills but also sets a 

foundation for broader applications of AI in education. 

Keywords: artificial intelligence, mobile learning, edtech, ai-powered learning, adaptive teaching. 

I. INTRODUCTION 

The rapid development of artificial intelligence and mobile technology is transforming the education sector. 
In general, the development of advanced language models such as ChatGPT has paved the way for new 
opportunities in individualized and interactive learning. In parallel, mobile applications have become 
omnipresent tools for communication, interaction, and information gathering among current digitally native 
university students [1]. Noticing this possibility, this study explores the development and deployment of a 
ChatGPT-powered mobile application to enhance C# programming skills at the university level. C# is a widely 
applied object-oriented programming language, ranking 4th in popularity among developers in 2017 [2]. C# skill 
is an essential one for beginner programming jobs, with applications ranging from web development to desktop 
and mobile applications and games. C# may be challenging, especially for beginners. With the growing 
complexity of the language, it becomes difficult for future developers to find points to enter in business market 
[3, 4].  Classroom teaching may not be enough for students to acquire the diverse concepts, paradigms, and tools 
associated with C# programming. A mobile app based on ChatGPT can act as a virtual tutor that completes gaps 
in course content, offers guided feedback, and supports independent practice [5]. Thanks to ChatGPT's natural 
language processing, it can communicate two-way with learners, respond to questions, provide explanations, 
and even guide them through programming exercises. This app, accessible anywhere and anytime, is a useful 
educational tool for students that complements learning and practicing programming outside of the classroom 
[5, 6]. Furthermore, an effective college application design can help improve student engagement, 
communication, and performance [1, 3]. 
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Personalized news feeds, event calendars, group discussions, and progress tracking can motivate students to 
continue interacting with their learning community and maintain the momentum of learning C# [7]. Push 
notifications can trigger reminders of assignment due dates, exam schedules, or new course content [8]. This 
study seeks to leverage the synergy between ChatGPT and mobile technology to develop an accessible, engaging, 
and efficacious means of acquiring C# skills. Using a human-centered design process, with input from students 
and faculty, we seek to identify salient features, content, and user experience factors that would make the app a 
useful adjunct to C# programming classes. Data from learning analytics and user testing can further tailor the 
app to the changing needs of students and instructors. Finally, the study would open new avenues for AI-driven 
mobile-based learning solutions for undergraduate programming. By enabling students to carry a personal 
programming tutor in their pocket, the study will provide an opportunity for the accommodation of generative 
AI tools such as ChatGPT into programming curricula. This tool is utilized in verifying and detecting mistakes 
that could be made by students. 

What is unique about this app from other learning tools is the guided and controlled way AI is integrated. 
Rather than giving students unrestricted access to ChatGPT, the app offers a guided learning experience, 
explicitly using AI to detect coding errors and demonstrate how to fix them. This deliberate restriction ensures 
that students learn through structured instruction rather than relying solely on ready-made solutions. 

1. STUDY OBJECTIVES 
To assess the efficacy of the ChatGPT-based programming learning system in enhancing students' 

programming skills (as measured through pre-/post-tests, with a particular focus on the five skill areas: algorithm 
design, code structure, documentation, debugging ability, and problem analysis). To measure the effect of the 
system on error correction capability for various categories (syntax errors, logical errors, runtime errors, 
algorithmic errors, and integration errors). To assess psychometric changes related to programming learning, 
namely programming self-efficacy, learning motivation, problem-solving confidence, technology adoption 
attitude, and perceptions of career readiness. To examine system usage patterns and their relationship to 
performance improvement, specifically frequency of use, query distribution, and usage patterns. Identify and 
evaluate the system's most significant qualitative advantages through an objective analysis based on five main 
axes: personalized learning, support for error diagnosis, reinforcement of concepts, control of learning rate, and 
relief from learning anxiety. Gather and analyze faculty members' opinions on the system's effects on student 
engagement, conceptual understanding, programming quality, classroom discussion quality, independent 
problem-solving, and the ability to handle project complexity. 

II. RELATED WORK 

Several recent studies have explored the potential of ChatGPT and similar AI technologies to enhance 
programming education. Sun et al. investigated a ChatGPT-supported programming made on the programming 
behavior, performance, and attitudes of college students. They established that ChatGPT was capable of 
generating, explaining, and providing code examples based on student queries, making it a platform for 
showcasing diverse programming solutions and strategies. It can also create individualized learning paths and 
provide learning content recommendations based on learners' backgrounds and goals. The study highlighted 
ChatGPT's unique ability to generate human-like conversational scripts in response to input, demonstrating its 
potential as an effective tool in teaching programming [9]. Nguyen et al. examined ChatGPT teaching and 
learning application, strengths, weaknesses, opportunities, and threats from the perspective of Biggs's 
"Prediction-Process-Product" (3P) model in a systematic review. They determined that at the prediction level, 
ChatGPT was able to align with student characteristics and classroom contexts. ChatGPT provides personalized, 
adaptive, and effective instructional support to influence teaching and learning processes at the process level. 
Finally, ChatGPT had a positive impact on student learning outcomes at the product level. The authors believe 
that by carefully considering ChatGPT's application at every stage, educators can leverage its strengths and 
compensate for its weaknesses to improve its integration [10]. Other research has addressed ChatGPT's potential 
and limitations, particularly in teaching software programming at the university level. A research paper by Al-
Shammari discussed the use of ChatGPT as an effective pedagogical tool, including its weaknesses and potential 
misuse challenges. The author called for curriculum redesigns to effectively integrate ChatGPT, with learning 
objectives for advanced skills such as creativity and critical thinking. Tasks could allow students to use ChatGPT 
to generate code on a range of topics, but require them to review, critique, and improve the generated solutions 
[11]. While ChatGPT has educational potential, there have been cautionary warnings against its limitations and 
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overdependence. In an online discussion on Reddit, experienced programmers warned that while ChatGPT can 
write code faster by implementing pre-existing templates and responding to queries, it tends to misunderstand 
complex code and is unable to innovate new solutions. They explained that ChatGPT is designed to enhance the 
capabilities of human programmers, but it does not eliminate the need to study programming concepts [12].  

A comparative analysis by Redress Compliance also indicated that while ChatGPT is better as a general AI 
for tasks such as teaching and research assistance, more specialized options such as GitHub Copilot are better 
suited to assisting with software development in integrated development environments [13]. Johnson, T., and 
Smith, L. present a C# learning assistant: an AI-powered mobile app for teaching programming. The goal is to 
develop and deploy a smart mobile app that helps novice programmers learn C# through personalized feedback 
and adaptive learning paths. They used natural language processing (NLP), machine learning algorithms, mobile 
app development frameworks, and Azure AI services. The program showed a 34% improvement in student code 
quality and a 41% reduction in debugging time compared to traditional learning courses. Students were 87% 
satisfied with the personalized learning process [14]. Williams, R., Chen, K., and Patel, S. present Adaptive 
Learning Environments for C# Programming: A Comparative Study of AI Integration. The goal is to compare 
traditional C# programming education with AI-enhanced learning environments based on students' 
comprehension and code generation abilities. They used GPT-4-based programming assistants, cognitive 
learning systems, automated classifiers, and learning analytics software. Students in AI-enhanced environments 
completed programming tasks 28% faster with 32% fewer errors. Programming structures were 23% better 
retained in the AI-enhanced group after a six-month follow-up test [15].  Garcia, M., and Thompson, E. designed 
CodeMentor: AI-powered real-time C# programming cues in learning contexts. Their goal was to design and 
develop an AI-facilitated system capable of providing immediate feedback and debugging for learning C# 
programming. They used deep learning, code analysis routines, transformer models, an optimized C# repository, 
and web pages for live collaborative editing. The system was able to identify 93.7% of students' errors with 
context-aware solutions. CodeMentor students completed 40% more programming problems in a single session, 
with significantly higher complexity scores compared to control groups [16]. 

Nguyen, F., and Roberts, A. created C# Companion: Developing blended learning mobile applications for C# 
programming courses. The goal was to design and test a mobile app that provides AI support to support 
undergraduate learners in blended C# programming courses. They used conversational AI, code completion 
algorithms, executable code snippets, mobile learning frameworks, and the Microsoft Bot framework. Students 
who used the mobile app showed a 36% improvement in engagement and a 29% improvement in course 
completion rates. User feedback indicated its specific effectiveness for non-traditional and mobile students who 
value comprehensive access to programming help [17]. Lee, J., Karim, A., and Brown, T. studied personalized 
learning paths in C# programming based on AI assessment and recommendation. They sought to create an AI 
system that assesses students' programming practices and generates personalized learning paths for acquiring 
C# programming materials. They used machine learning classification techniques, predictive analytics, 
educational data mining, and adaptive content management systems. The system accurately predicted 87% of 
student errors and provided targeted interventions, reducing the time to master the concept by 45%. The 
effectiveness of self-programming was significantly improved (p<0.001) compared to the control group [18]. 
Martinez, L., and Kim, H. developed SharpTutor: An Intelligent Tutoring System for C# Programming with 
Affective Computing Components. The goal was to investigate how emotion-sensitive AI tutoring systems can 
improve students' experience and learning outcomes in learning C# programming. They used emotion 
recognition algorithms, intelligent tutoring systems, affective computing, and natural language understanding. 
The system reduced students' frustration by 38% and increased their persistence in solving difficult programming 
problems by 42%. Problem-solving techniques improved significantly compared to those in traditional tutorials, 
with more substantial effects for students with initially low self-confidence [19]. 

 Zhang, W., Harris, M., and Anderson, J. created CodeLens: Visual Analytics and AI Guidance for C# 
Programming in Educational Settings. The goal was to build and evaluate a platform that combines visual 
analytics and AI support to enhance understanding of C# program execution and debugging. They applied 
software visualization tools, AI-powered code analysis, execution pattern detection, and eye-tracking technology. 
Students using CodeLens demonstrated 57% faster identification of logical errors and a 63% better understanding 
of complex C# concepts such as delegates and LINQ. The visual analytics dashboard improved professors' ability 
to identify struggling students by 74% [20]. Patel, R. and Jackson, T. present MobileSharp: Democratizing C# 
Education through AI-Enhanced Mobile Learning. The goal is to develop and evaluate an open-source mobile 
application for teaching C# programming to underserved populations using AI-facilitated scaffolding and 
exploration. 
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Building upon these insights, this research aims to harness the strengths of ChatGPT to create an accessible 
and effective mobile learning tool for C# programming, while mitigating the risks through a user-centred design 
that emphasizes active learning and critical thinking skills. By thoughtfully integrating ChatGPT into the app 
and curriculum, we hope to enhance, rather than replace, the human elements of programming education. 

III. PROPOSED SYSTEM 

1. THE PROPOSED SYSTEM 

The proposed system consists of two main system sections: first, education and explanation, and second, 
assessment and testing, as shown in Figure 1. 

1.1 Education and Explanation Subsystem 
This subsystem consists of three educational levels and interactive learning tools as follows: 

1.1.1 Three Educational Levels  
These three levels are: Beginner: basic concepts and introductory skills; Intermediate: enhanced concepts and 

functional uses; and Advanced: advanced topics and specialized knowledge. These levels follow learning levels 
specifically designed for students at different proficiency levels, ensuring that the content is inspiring and 
sufficiently relevant to what they already know. These levels are cumulative, with each level building on the 
previous one as a foundation for continuous, rational learning. 

1.1.2 Interactive Learning Tools  

Consists of real-time application exercises, interactive simulations, multimedia content (videos, animations), 
and collaborative learning features. 

 

FIGURE 1. The block diagram for the proposed system. 
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1.2 Assessment and Testing Subsystem 
The Testing and Assessment section includes several key features designed to enhance learning and assess 

student progress in the most effective ways. Each assessment would be tailored to the appropriate difficulty level 
(beginner, intermediate, or advanced) and would measure both theoretical understanding and practical 
application of the material. Each lesson contains four questions, with each question worth five points, and the 
total score for the course is out of 100. After each lesson, 5 questions are shown for the student who can't open 
the next lesson unless they've answered all the questions. In cases where the student doesn't achieve the full score 
on any question, ChatGPT assists them in reaching the maximum score by offering tips and highlighting specific 
parts that can be improved. The system incorporates automated quizzes and tests that provide immediate 
feedback and assessment, allowing students to gauge their understanding of the material in real-time. ChatGPT 
integration represents a significant advancement in personalized learning support. Through AI-powered 
tutoring assistance, students receive on-demand help tailored to their specific needs and learning styles. Android 
chat code with Firebase integration is shown in Table 1. 

Table 1: Screenshots of the assessment and testing subsystem. 

Screenshots Description 

 

Code Syntax Highlighter Component: Prepares the  

conversation payload for the API. 

Components 

- Creates a user Message JSON object with:  

• role: "user" 

• content: new Message 

- Adds a message to the message History  

 

Firebase Message Sender Implementation: 

Firebase Integration: 

- Creates a database reference with a timestamp 

- Sets message data:  

• To: recipient 

• msg: message content 

• sender: sender ID 

UI Updates:  

- Inflates the message layout 

- Updates message and time views 

 

Firebase Message Retriever Component: contains sophisticated  

message retrieval logic, managing both individual and group  

message handling with proper validation. 

 

OpenAI API Response Handler: 

- Validation Checks:  

• Verifies that/sender/msg fields exist 

• Matches the recipient and sender IDs 

• Handles group messages 

- Time Processing:  

• Creates a timestamp 

• Formats a time string 

- UI Updates:  

• Inflates the message layout 
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• Updates message content and time 

• Adds to message list 

 

OpenAI API Request Configuration 

API request setup, configuring proper headers and request body for 

OpenAI API communication. 

1. Parses the response body 

2. Extract the choices array 

3. Gets an assistant message 

4. Update conversation history 

 

 

ConFigures API request: 

• Headers:  

1. Sets content type to application/ JSON 

2. Adds Bearer authentication 

• Body:  

3. Creates RequestBody with message 

4. Sets UTF-8 encoding 

• URL: Uses OpenAI API endpoint 

 

 

Bot Message Display: 

- Creates a view from the botmsg layout  

- View Setup:  

• Finds TextView by ID 

• Sets message text 

• Adds to message list 

 

IV. APPLICATION AND EXPERIMENTAL RESULTS 

This section focuses on the implementation and evaluation of the proposed system. It is divided into two main 
parts as follows. 

1.1 Implementation of the Proposed System  
The proposed management system is an Android application compatible with Android 8.1 Oreo (API level 

27) and above. Its main features are that it is easy to install on mobile phones and requires little storage space. In 
addition, its user interface is very easy to use and convenient [24]. It provides a reliable, secure, and highly 
effective solution to meet the demands of higher education institutions in today’s digital age. Table 2 shows 
screenshots of the proposed system. 
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Table 2. Screenshots of the proposed system 

Screenshots Description Screenshots Description 

 

This is the login 

screen for students 

and teachers. It 

consists of two text 

fields: system ID and 

password. 

 

 

Student Home Screen: The 

main navigation hub with six 

primary options: 

Lessons 

Quiz 

Evaluation 

Bot 

Chat 

Logout 

 

 

 

Lessons Menu 

Screen:  This screen 

presents a structured 

learning path for C# 

programming with 

four main lessons: 

Lesson 1: Write & 

Read in C# 

Lesson 2: Constants, 

Vars and Data Types 

Lesson 3: If 

Statements 

Lesson 4: Loops (For 

-While) 

 

The educational bot chat 

interface shows: 

The bot asks questions about 

the C# code 

Students can provide answers 

The bot gives detailed 

feedback and ratings 

 

 

A list of students 

registered in the 

system appears. 

 

Evaluation Screen displays 

student information and 

performance metrics: 

Personal details: Name 

(Mohamed), ID (1111), 

University (Mansoura) 

College: Specific Education 

Year: 2nd 

Progress tracking with a 

circular progress indicator 

Current progress shown as 

percentages (Lesson 1: 6%) 

Overall Score: 1% 
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1.2 Evaluation of the Proposed System 

1.2.1 Sample and Implementation Procedures 

The study sample consisted of 100-150 computer science students, mostly in their second or third year of the 
academic program. Participants were equally divided into two groups: an experimental and a control. The study 
sample consisted of 120 computer science students (initially planned to be between 100 and 150). 

The participants were mostly second and third-year students. They were equally divided into two 
experimental and control groups (60 students in each group). The demographics were balanced between the two 
groups, with no significant differences between: 
• Gender balance (approximately 60% male, 40% female). 
• Age (mean approximately 20.5 years). 
• Year of study (approximately 55-58% in their second year, 42-45% in their third year). 
• Programming experience (approximately 18 months). 

1.2.2 Pre-test Assessment 
Both the experimental and control groups completed the same pre-tests before starting the program to 

determine their basic programming knowledge level. 
Pre-test Format: Students completed standardized programming skills tests (scores from 0 to 100). 
Main Results: There was no difference in pre-test scores between the two groups (predicted: 64.8±8.3, 

continued: 64.2±8.6), and the difference was not statistically significant (t(118) = 0.398, p = 0.691). 
Domain-Specific Baseline: Initial proficiency in five programming domains was assessed on a scale of 1 to 5: 

• Algorithm Design (exp: 3.2±0.7, cont: 3.1±0.8) 
• Code Structure (exp: 3.3±0.6, cont: 3.2±0.7) 
• Documentation (exp: 3.0±0.8, cont: 3.1±0.7) 
• Debugging Skills (exp: 2.8±0.9, cont: 2.9±0.8) 
• Problem Analysis (exp: 3.1±0.7, cont: 3.0±0.8) 

Table 3 demonstrates a demographic balance between experimental and control groups. The absence of 
statistically significant differences across gender, age, academic level, and programming experience ensures valid 
comparisons and minimizes the influence of confounding variables. 

Table 3. Demographic characteristics of study participants (n=120). 

Variable Experimental Group (n=60) Control Group (n=60) Statistical Significance 

Gender Distribution   χ²(1) = 0.135, p = 0.713 

Males 38 (63.3%) 36 (60.0%)  

Females 22 (36.7%) 24 (40.0%)  

Age (years)   t(118) = 0.854, p = 0.394 

Mean (SD) 20.6 (1.3) 20.4 (1.4)  

Range 18-24 18-25  

Academic Level   χ²(1) = 0.134, p = 0.714 

Second Year 35 (58.3%) 33 (55.0%)  

Third Year 25 (41.7%) 27 (45.0%)  

Programming Experience (months)   t(118) = 0.216, p = 0.829 

Mean (SD) 18.3 (5.7) 18.1 (5.5)  

Range 8-36 7-38  

 
Table 4 reveals significant superior performance by the experimental group in both mid and post-intervention 

assessments (p < 0.001). The experimental group's improvement rate (31.0%) substantially exceeds the control 
group's (12.3%). The large effect size (Cohen's d = 0.85) for the experimental group indicates strong practical 
significance. 
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Table 4. Quantitative assessment results. 

Assessment Experimental Group (n=60) Control Group (n=60) Statistical Comparison 

Pre-test Score (0-100)    

Mean (SD) 64.8 (8.3) 64.2 (8.6) t(118) = 0.398, p = 0.691 

Range 45-85 43-84  

Mid-intervention Assessment (0-100)    

Mean (SD) 75.3 (7.9) 68.5 (8.2) t(118) = 4.703, p < 0.001* 

Improvement from Pre-test 16.2% 6.7%  

Post-test Score (0-100)    

Mean (SD) 84.9 (7.6) 72.1 (8.3) t(118) = 8.738, p < 0.001* 

Improvement from Pre-test 31.0% 12.3%  

Effect Size (Cohen's d) 0.85 0.33  

V. DATA COLLECTION INSTRUMENTS 

The study employed a robust mixed-methods approach, collecting multiple types of data throughout the 
semester-long intervention. The data collection process was a survey of responses and test scores. The study 
employs both quantitative and qualitative data collection methods. Quantitative tools include programming 
skills assessments (pre-test, periodic tests, and post-test) and various surveys measuring student satisfaction, 
experience evaluation, programming confidence, and learning motivation. Qualitative instruments comprise 
semi-structured interviews with students and faculty members, along with content analysis of application usage 
logs, student interactions with ChatGPT, and error reports with solutions. Table 5 demonstrates significant 
improvement across all programming skill domains for the experimental group, with statistically significant 
group × time interactions. The most substantial improvements were observed in documentation and debugging 
skills, suggesting the intervention particularly strengthens these often-challenging areas. 

In terms of the mechanism for distributing participants, the distribution was random and there was no kind 
of bias. Participation was voluntary and not obligatory. The study was conducted during a standard academic 
semester (first semester of 2024-2025), which typically spans 3-4 months. This provides a clearer understanding 
of the intervention duration.  

Physical Environment: Testing occurred in computer laboratories at the institution, suggesting a semi-
controlled environment where students had access to consistent hardware and software resources. 

Institutional Context: The study was conducted at the Faculty of Specific Education at Mansoura University, 
which provides information about the educational setting and potential student demographics. 

Technical Infrastructure: The use of computer laboratories indicates that the necessary technical infrastructure 
was available to all participants, potentially reducing variability in access to resources. 

Table 5. Programming skills analysis by domain (Scale 1-5). 

Skill Domain Pre-intervention  Post-intervention  Group × Time Interaction 

 Exp. Cont. Exp. Cont. Statistics 

Algorithm Design 3.2 (0.7) 3.1 (0.8) 4.3 (0.6) 3.5 (0.7) F(1,118) = 28.73, p < 0.001* 

Code Structure 3.3 (0.6) 3.2 (0.7) 4.4 (0.5) 3.6 (0.6) F(1,118) = 32.15, p < 0.001* 

Documentation 3.0 (0.8) 3.1 (0.7) 4.5 (0.5) 3.5 (0.7) F(1,118) = 41.28, p < 0.001* 

Debugging Skills 2.8 (0.9) 2.9 (0.8) 4.2 (0.6) 3.4 (0.7) F(1,118) = 35.91, p < 0.001* 

Problem Analysis 3.1 (0.7) 3.0 (0.8) 4.3 (0.6) 3.5 (0.7) F(1,118) = 24.37, p < 0.001* 
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VI. DATA ANALYSIS 
The analysis framework incorporates both quantitative and qualitative approaches. Quantitative analysis 

utilizes statistical tests including ANOVA, independent samples t-tests, correlation coefficients, and effect size 
measurements. Descriptive statistics such as means, standard deviations, improvement rates, and usage statistics 
are also analyzed. Qualitative analysis involves thematic analysis of interviews, content analysis of student 
interactions, and analysis of error patterns and resolution methods [25]. The experimental group demonstrated 
significantly greater improvement in correcting all error types, with syntax errors showing the highest success 
rate (91.2%), as shown in Table 6 and Figure 2. This suggests the intervention effectively enhances diagnostic 
abilities and problem-solving skills across various error categories, with particularly strong effects on 
fundamental syntax understanding.  

Table 6. Error correction proficiency by error type. 

Error Type Experimental Group  Control Group  Between Groups 

 Pre (%) Post (%) Pre (%) Post (%) Post-test Comparison 

Syntax Errors 64.3 (11.2) 91.2 (6.4) 65.1 (10.8) 76.3 (9.5) t(118) = 9.87, p < 0.001* 

Logical Errors 58.9 (12.6) 85.7 (7.8) 57.6 (13.1) 66.2 (11.3) t(118) = 10.63, p < 0.001* 

Runtime Errors 60.7 (11.8) 88.4 (7.1) 59.8 (12.3) 70.5 (10.6) t(118) = 10.49, p < 0.001* 

Algorithm Errors 55.2 (13.5) 82.6 (8.9) 54.9 (13.8) 64.1 (12.2) t(118) = 9.41, p < 0.001* 

Integration Errors 52.1 (14.2) 79.8 (9.6) 51.7 (14.5) 61.3 (13.1) t(118) = 8.72, p < 0.001* 

 
Results show substantial improvements in all psychological variables for the experimental group, particularly 

in programming self-efficacy and learning motivation, as shown in Table 7. 

Table 7. Psychological variables (Scale 1-5). 

Variable Experimental Group  Control Group  ANOVA Results 

 Pre Post Pre Post Group × Time 

Programming Self-Efficacy 3.2 (0.7) 4.6 (0.4) 3.1 (0.8) 3.7 (0.6) F(1,118) = 36.42, p < 0.001* 

Learning Motivation 3.4 (0.6) 4.7 (0.3) 3.3 (0.7) 3.8 (0.5) F(1,118) = 33.85, p < 0.001* 

Problem-Solving Confidence 3.1 (0.8) 4.5 (0.5) 3.0 (0.8) 3.6 (0.7) F(1,118) = 28.64, p < 0.001* 

Tech Adoption Attitude 3.6 (0.7) 4.8 (0.3) 3.5 (0.8) 3.9 (0.6) F(1,118) = 27.13, p < 0.001* 

Career Readiness Perception 2.9 (0.9) 4.3 (0.6) 2.8 (0.9) 3.4 (0.8) F(1,118) = 25.79, p < 0.001* 

 

   

FIGURE 2. The graph of psychological variables (Scale 1-5). 
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Table 8 shows a strong correlation between application usage and performance improvement (r = 0.71). Error 
correction (46.2%) and concept explanation (31.4%) comprise the majority of application use, suggesting these 
features provide the greatest value to learners. The high solution implementation rate (76.3%) indicates that 
students actively apply the guidance received.  

Table 8. Application interaction analysis (experimental group, n=60). 

Interaction Metric Mean (SD) Range Correlation with Performance 

Usage Frequency    

Daily Sessions 2.7 (0.9) 1-5 r = 0.64, p < 0.001* 

Daily Duration (minutes) 43.6 (12.4) 18-82 r = 0.71, p < 0.001* 

Weekly Queries 56.3 (14.8) 32-94 r = 0.68, p < 0.001* 

Query Distribution    

Error Correction Queries (%) 46.2 (9.5) 28-65 r = 0.59, p < 0.001* 

Concept Explanation (%) 31.4 (7.2) 18-48 r = 0.53, p < 0.001* 

Code Optimization (%) 14.7 (4.3) 6-25 r = 0.47, p < 0.001* 

General Programming (%) 7.7 (3.6) 2-17 r = 0.32, p = 0.013* 

Engagement Patterns    

Average Query Depth 3.2 (0.9) 1.5-5.4 r = 0.69, p < 0.001* 

Query Refinement Rate (%) 42.5 (11.7) 21-68 r = 0.57, p < 0.001* 

Solution Implementation Rate (%) 76.3 (13.4) 45-92 r = 0.74, p < 0.001* 

 
Table 9 presents the qualitative analysis highlights five key themes, with "Personalized Learning" and "Error 

Diagnosis Support" being the most prevalent. The strong correlations between these themes and quantitative 
metrics strengthen the validity of the findings and provide deeper insight into the mechanisms through which 
the intervention affects learning outcomes 

Table 9. Qualitative analysis summary (mixed methods integration). 

Theme Frequency Representative Quotes Quantitative Correlation 

Personalized Learning 
52/60 participants 

(86.7%) 

"It's like having a tutor who knows exactly what I 

struggle with and adjusts explanations accordingly." 

r = 0.72 with self-efficacy 

increase 

Error Diagnosis 

Support 

58/60 participants 

(96.7%) 

"I'm learning to identify my own mistakes because it 

shows me patterns in my errors that I wouldn't have 

noticed." 

r = 0.68 with debugging 

improvement 

Concept 

Reinforcement 

47/60 participants 

(78.3%) 

"When textbooks and lectures don't make sense, 

getting multiple explanations with examples helps 

concepts finally click." 

r = 0.65 with algorithm 

design improvement 

Learning Pace Control 
51/60 participants 

(85.0%) 

"I can work through problems at 2 am when I'm most 

productive without waiting for office hours." 

r = 0.59 with motivation 

increase 

Reduced Learning 

Anxiety 

49/60 participants 

(81.7%) 

"It feels safe to make mistakes and ask 'stupid 

questions' without judgment." 

r = 0.71 with problem-

solving confidence 

 
Faculty observations predominantly reflect positive assessments of the intervention, particularly regarding 

classroom discussion quality (100%) and code quality improvement (87.5%) as shown in Table 10. However, 
concerns about independent problem-solving suggest a potential area for refinement. The statistical changes in 
student behavior corroborate these observations with significant improvements in most categories.  
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Table 10. Faculty perceptions and observations (n=8). 

Observation 

Category 
Positive Assessments Concerns Raised Statistical Change in Student Behavior 

Student 

Engagement 
7/8 (87.5%) 2/8 (25.0%) χ²(1) = 7.14, p = 0.008* 

Conceptual 

Understanding 
6/8 (75.0%) 3/8 (37.5%) χ²(1) = 4.26, p = 0.039* 

Code Quality 

Improvement 
7/8 (87.5%) 1/8 (12.5%) χ²(1) = 9.37, p = 0.002* 

Classroom 

Discussion Quality 
8/8 (100.0%) 2/8 (25.0%) χ²(1) = 10.23, p < 0.001* 

Independent 

Problem-Solving 
5/8 (62.5%) 4/8 (50.0%) χ²(1) = 1.76, p = 0.185 

Project 

Complexity 

Handling 

7/8 (87.5%) 2/8 (25.0%) χ²(1) = 7.14, p = 0.008* 

 
All statistical tests demonstrate high statistical significance, as shown in Table 11 (p < 0.001) with medium to 

large effect sizes. The high statistical power values (Power > 0.95) indicate a very low probability of Type II errors, 
enhancing the reliability of the findings. The comprehensive analysis approach strengthens the overall validity 
of the study's conclusions [11]. 

Table 11. Comprehensive statistical test results. 

Statistical Test Result Significance Effect Size Power 

Independent t-test (Post-test) t(118) = 8.738 p < 0.001* Cohen's d = 0.85 0.99 

Repeated Measures ANOVA (Time × Group) F(1,118) = 42.17 p < 0.001* η² = 0.16 0.99 

MANOVA (Programming Skills) Wilks' λ = 0.64 p < 0.001* η² = 0.36 0.99 

Regression (Usage vs. Performance) F(3,56) = 28.43 p < 0.001* R² = 0.59 0.99 

ANCOVA (Controlling for Prior Experience) F(1,117) = 38.26 p < 0.001* η² = 0.15 0.99 

Mediation Analysis (Self-Efficacy) Sobel z = 4.82 p < 0.001* κ² = 0.26 0.98 

Mixed Methods Joint Display Analysis χ²(12) = 47.29 p < 0.001* Cramer's V = 0.38 0.97 

1. FEATURE SATISFACTION COMMENTS 

• About Diagnostics: "It doesn't just tell me what the problem is, it explains the underlying problem in a way 
that helps me avoid recurrence." 

• About Concept Explanation: "When I don't understand something in the lectures, having multiple 
explanations with real-life examples helps me understand it." 

• Code Improvement: "I've learned more efficient programming techniques that I wouldn't have discovered 
otherwise. My code is now clearer and more efficient." 

• Statistical Conclusions: 
o Significant improvement in performance in the experimental group 
o Large effect size for the experimental intervention 
o Very strong positive correlation between app use and performance 
o Absolute improvement in all variables assessed 
o Statistically significant differences between technical and psychometric measures 
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VII. CONCLUSIONS 
The study results provide strong evidence for the effectiveness of integrating ChatGPT into mobile 

programming instruction for teaching C# in higher education. The significant improvements in student 
performance (p < 0.001) with medium to large effect sizes indicate that AI-assisted instruction can significantly 
enhance the learning of programming skills compared to traditional methods. Several important implications 
emerge from this study: First, the individualized component of AI-assisted instruction appears to fulfill a 
fundamental requirement in programming instruction. The high positive correlations between app use and 
performance increases suggest that students are being assisted by immediate, contextual feedback that closely 
matches their learning styles and coding habits. Personalization may overcome traditional barriers to 
programming mastery, especially for students who struggle with traditional teaching methods. 

Second, the psychological benefits observed in the experimental group highlight the emotional dimension of 
AI-assisted learning. The reduced frustration and increased confidence among users indicate the app's success in 
overcoming the emotional hurdles typically associated with learning programming. Psychological support may 
be just as important as technical support, creating a positive feedback loop that fosters interest and continued 
practice. From a pedagogical perspective, the effort undertaken in this study challenges traditional approaches 
to teaching programming, highlighting the future potential of AI as a pedagogical aid, without replacing human 
instruction. The model used in this study provides an effective blueprint for teachers to integrate AI technology 
into their current curricula. This could redefine the role of the teacher to become more advanced in learning 
functions, with systematic error correction and basic tutoring provided through AI. 

The high statistical power (Power > 0.95) of our findings provides a solid foundation for future 
implementations of similar systems across other programming languages and educational contexts. While this 
study focused specifically on C# instruction, the methodological approach and technical architecture could be 
adapted to support diverse programming paradigms and student populations. 

VIII. FUTURE WORKS  

Following the positive results of our research on AI-powered mobile applications for teaching C# 
programming, several directions for further research are emerging: 
• Multilingual Implementation: Extending the current framework to support multiple programming 

languages besides C#, and exploring whether a similar performance increase can be achieved across different 
paradigms (object-oriented, functional, and scripting). 

• Longitudinal Studies: Conducting longitudinal studies to evaluate the long-term retention of programming 
skills and knowledge acquired through AI-assisted learning compared to traditional methods. 

• Adaptive Learning Algorithms: Developing more sophisticated algorithms to adjust the amount of support 
based on student success, potentially incorporating machine learning methods to anticipate student needs. 
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