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Abstract— In the present research work, we presented an 

algorithm using finite difference wit h non-uniform step 

length i.e. variable step length, for the approximate numerical 

solution of the second-order differential equation and 

corresponding boundary value problems in ODEs. We have 

investigated under appropriate conditions the convergence of 

the proposed algorithm. We established that the proposed 

algorithm converges and the order of the 

convergence/accuracy of the algorithm is at least cubic. We 

tested the proposed algorithm for the numerical solution of 

several model problems. The numerical results obtained for 

these model problems with known/constructed exact solution, 

justify the theoretical conclusions of the proposed algorithm. 

The computational results obtained for these model problems 

suggest that the method is efficient and accurate. 

Keywords— Boundary Value Problem, Convergence of the 

Method, Cubic Order, Finite Difference Method, Non-uniform 

Step Length. 

                         

I. INTRODUCTION  

For the development of the algorithm, we 
considered the boundary value problem of the 
following form 

𝑢′′(𝑥) + 𝐾2𝑢(𝑥) = 𝑓(𝑥, 𝑢),    

    𝑎 < 𝑥 < 𝑏                     (1)  

subject to the boundary conditions 

𝑢(𝑎) = 𝛼  and  𝑢(𝑏) = 𝛽,   

where K, α and β are constants. Under the following 
assumptions and refer literature in [1,2,3], we 
assume the existence and uniqueness of the solution 
u(x) for the problem (1): 

(i) f (x, u) is continuous in [𝑎, 𝑏] × ℝ  

(ii) 
𝜕𝑓

𝜕𝑢
  exist and is continuous 

(iii) 
𝜕𝑓

𝜕𝑢
≥ 0 

Ordinary differential equations find their application in 
many fields of engineering and science. A specific 
application of ODE is the modelling of wave 
problems. For in- stance, the Helmholtz equation in 
one dimension is used to study acoustic phenomena 
in aerodynamics [4], underwater acoustic [5,6] and 
electromagnetic applications [7]. Solving these 
boundary value problems with a higher value of K in 
scientific computation is a challenging task. As of 
late, there has been a lot of interest shown by the 
computational mathematician in developing 
methods/ algorithms for the approximate numerical 
solution of Helmholtz type equation as two-point 
boundary value problems with a higher value of K. 

For the numerical solution of the boundary value 
problem for the Helmholtz equation, in general, a finite 
difference method [8] is used. However, there are some 
other methods reported in the literature such as finite 
element [10], finite-infinite element [11] and some 
iterative methods [12] and references therein. 

 

In the present work, we shall develop an 
algorithm using finite differences for the approximate 
numerical solution of the problems (1). We shall 
discuss the order and accuracy of the developed 
algorithm under appropriate conditions which is 
otherwise at least three. To demonstrate the efficiency 
and accuracy of the proposed method, we shall 
perform numerical experiments with model problems 
and discuss numerical results. 

 

In this article, we have presented our work as 
follows. An algorithm using finite differences will be 
presented in the next section, in Section III we will 
outline the derivation of the algorithm. In Section 
IV, calculate the truncation error in the proposed 
method and Section V, we have discussed 
convergence and the order of the accuracy. The 
application of the proposed method, i.e. numerical 
experiments on the several model problems and 
illustrative numerical results have been produced to 
show the convergence in Section VI. In the last 
section VII, there are a discussion and conclusion on 
the performance of the proposed method. 
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II. THE FINITE DIFFERENCE METHOD 

We define N finite numbers of nodal points in [a,b], 
the domain in which the solution of the problem (1) is 
desired.  Let a ≤ x0< x1 < x2 <.... < xN+1 = b 

i.e., xi+1 = xi + hi+1, i = 0(1)N and hi, the 

variable step length. We wish to determine the 

approximation of the analytical solution u(x) of the 

problem (1) at the nodal points xi, i = 1, 2,  .., N . We 

denote the approximation of u(x) at the node x = xi 

as ui for each i = 1, 2,.., N . Also, we denote the 

approximate value of the forcing function f (x, u(x)) 

at node x = xi as fi for each i = 1, 2, N. We shall 

follow same notation in defining other notations 

this article i.e., 𝑓𝑖±1 𝑎𝑛𝑑 𝑢𝑖±1 . Thus, using these 

notations we rewrite the differential equation (1) at 

the mesh point x = xi, 

𝑢𝑖
′′+𝐾2𝑢𝑖 = 𝑓(𝑥𝑖 , 𝑢𝑖)              (2) 

Following the ideas in [8,9], we propose a three 
points cubic order finite difference method for the 
numerical solution of the problem (1), 

𝑎2𝑖𝑢𝑖+1 + 𝑎1𝑖𝑢𝑖 + 𝑎0𝑖𝑢𝑖−1 = 𝑐2𝑖𝑓𝑖+1 + 𝑎1𝑖𝑓𝑖 +

𝑎0𝑖𝑓𝑖−1,    𝑖 = 1,2,…𝑁.       (3)  

were 

𝑎2𝑖 = 24(6−𝐾
2ℎ𝑖

2), 

𝑐2𝑖 = 2ℎ𝑖
2(𝑟𝑖(6 − 𝑟𝑖𝐾

2ℎ𝑖
2)+ 6(𝑟𝑖

2−1)), 

𝑎1𝑖 = (1+ 𝑟𝑖)(24𝐾
2ℎ𝑖

2(1+ 𝑟𝑖)
2−

6𝑟𝑖𝐾
4ℎ𝑖

4(1+ 𝑟𝑖 + 𝑟𝑖
2)+ 𝑟𝑖

3𝐾6ℎ𝑖
6−144),  

𝑐1𝑖 = (1+ 𝑟𝑖)ℎ𝑖
2(12(𝑟𝑖

2 +3𝑟𝑖 +1)−

𝑟𝑖𝐾
2ℎ𝑖

2(6𝑟𝑖
2+𝑟𝑖(4−𝐾

2ℎ𝑖
2)+ 6)),  

𝑎0𝑖 = 24𝑟𝑖(6−𝐾
2ℎ𝑖

2𝑟𝑖
2),   

𝑐0𝑖 = 2𝑟𝑖ℎ𝑖
2(𝑟𝑖(6− 𝑟𝑖𝐾

2ℎ𝑖
2) + 6(𝑟𝑖

2 −1)) . 

III. DERIVATION OF THE METHOD 

 

In this section, we outline the derivation of the 
algorithm. To develop an algorithm, we discretize 
problem (1) at the nodal point xi. We approximate 
the differential equation (2) by following the 
difference formula, 

𝑎2𝑖𝑢𝑖+1 + 𝑎1𝑖𝑢𝑖 + 𝑎0𝑖𝑢𝑖−1 = 𝑐2𝑖𝑓𝑖+1 + 𝑐1𝑖𝑓𝑖 +

𝑐0𝑖𝑓𝑖−1,    𝑖 = 1,2,…𝑁.                     (4)  

where the coefficients a0i, a1i, a2i, c0i, c1i, c2i are 

function of ri and 𝑟𝑖 =
ℎ𝑖+1

ℎ𝑖
.  We can determine 

these coefficients by the method of Taylor series 

expansion and comparing the various coefficients in 

the expansion. So let us write terms ui±1 and fi±1 in 

Taylor series about xi and comparing the coefficients 

of hp, p = 0, 1,  .., 4. We have obtained a system of 

linear equations in coefficients a0i, a1i, a2i, c0i, c1i, c2i. 

After solving the system of equations, the 

coefficients are 

𝑎2𝑖 = 24(6−𝐾
2ℎ𝑖

2),   

 𝑐2𝑖 = 2ℎ𝑖
2(𝑟𝑖(6− 𝑟𝑖𝐾

2ℎ𝑖
2) + 6(𝑟𝑖

2 −1)), 

𝑎1𝑖 = (1+ 𝑟𝑖)(24𝐾
2ℎ𝑖

2(1+ 𝑟𝑖)
2−

6𝑟𝑖𝐾
4ℎ𝑖

4(1+ 𝑟𝑖 + 𝑟𝑖
2)+ 𝑟𝑖

3𝐾6ℎ𝑖
6−144),  

𝑐1𝑖 = (1+ 𝑟𝑖)ℎ𝑖
2(12(𝑟𝑖

2 +3𝑟𝑖 +1)−

𝑟𝑖𝐾
2ℎ𝑖

2(6𝑟𝑖
2+𝑟𝑖(4−𝐾

2ℎ𝑖
2)+ 6)),  

𝑎0𝑖 = 24𝑟𝑖(6−𝐾
2ℎ𝑖

2𝑟𝑖
2),                   

𝑐0𝑖 = 2𝑟𝑖ℎ𝑖
2(𝑟𝑖(6 − 𝑟𝑖𝐾

2ℎ𝑖
2)+ 6(𝑟𝑖

2−1))   

           (5) 

Thus, together with (4) and (5), we obtained our 
proposed algorithm, i.e. finite difference method (3) 
for the approximate numerical solution of the 
problem (1). It is a 𝑁 ×𝑁 system of linear equations if 
forcing function f (x, u) is linear otherwise system of 
nonlinear equations. The solution of the system of 
equations is the approximate numerical solution of 
problem (1).  

IV. LOCAL TRUNCATION ERROR 

To calculate the local truncation error in the 
algorithm (3), we apply the Taylor series expansion 
method at the nodal points x = xi, i = 1, 2, .., N. Thus 
the truncation error Ti in method (3) may be 
written as: 

𝑇𝑖 = 𝑎2𝑖𝑢𝑖+1 + 𝑎1𝑖𝑢𝑖 + 𝑎0𝑖𝑢𝑖−1 − 𝑐2𝑖𝑓𝑖+1 − 𝑐1𝑖𝑓𝑖

− 𝑐0𝑖𝑓𝑖−1 = 

ℎ𝑖
5𝑟𝑖(1 − 𝑟𝑖)

30

{
 
 

 
 5𝐾2(1 + 𝑟𝑖) (

6(1 + 𝑟𝑖)

−𝑟𝑖
2(6 − 𝐾2ℎ𝑖

2)
) 𝑢𝑖

(3)

−(

36(𝑟𝑖
4 + 𝑟𝑖

3 + 𝑟𝑖
2 + 𝑟𝑖 + 1)

−60(1 + 𝑟𝑖)(1 + 𝑟𝑖 − 𝑟𝑖
3)

−2𝑟𝑖
2𝐾2ℎ𝑖

2(8 + 8𝑟𝑖 + 3𝑟𝑖
2)

)𝑢𝑖
(5)

}
 
 

 
 

     (6) 

where 𝑟𝑖 =
ℎ𝑖+1

ℎ𝑖
 . Thus we have obtained a 

truncation error at each node of O(h5). 

V. THE CONVERGENCE OF THE METHOD 

Let us rewrite equation (1) in the following form 

−𝑢′′(𝑥) − 𝐾2𝑢(𝑥) + 𝑓(𝑥, 𝑢) = 0            ( 7)                    

Let Ui = u(xi) is exact and ui is an approximate 
solution of the problem (1). Apply the algorithm (3) 
and at node xi, we have 

−𝑎2𝑖𝑢𝑖+1 − 𝑎1𝑖𝑢𝑖 − 𝑎0𝑖𝑢𝑖−1 + 𝑐2𝑖𝑓𝑖+1 + 𝑐1𝑖𝑓𝑖

+ 𝑐0𝑖𝑓𝑖−1 = 0,   𝑖 = 1,2,… ,𝑁        (8) 
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The exact solution Ui of difference equation (3) will 
satisfy 

−𝑎2𝑖𝑈𝑖+1 − 𝑎1𝑖𝑈𝑖 − 𝑎0𝑖𝑈𝑖−1 + 𝑐2𝑖𝐹𝑖+1 + 𝑐1𝑖𝐹𝑖 +

𝑐0𝑖𝐹𝑖−1 + 𝑇𝑖 = 0,         𝑖 = 1,2,… ,𝑁              (9)  

where Ti is the truncation error at node xi. Also, 
we can redefine the forcing function in problem (1) 
in term of approximate and exact solutions, 

𝑓𝑖 = 𝑓(𝑥𝑖 , 𝑢𝑖) 

𝐹𝑖 = 𝑓(𝑥𝑖 , 𝑈𝑖) 

Let we linearize the forcing functions at different 
nodal points and we will obtain, 

Fi = f (xi, Ui) = f (xi , ui) + (Ui − ui)Gi , (10) 

Fi±1 = f (xi±1, Ui±1) = f (xi±1, ui±1) + (Ui±1− 

ui±1)Gi±1 

where 𝐺𝑖 = (
𝜕𝑓

𝜕𝑢
)
𝑖
and 𝐺𝑖±1 = (

𝜕𝑓

𝜕𝑢
)
𝑖±1

. Let define 

an error in the exact and approximate solution of 
the problem at different nodes i.e. ϵi = ui − Ui and 

𝜀𝑖±1 = 𝑢𝑖±1−𝑈𝑖±1  Subtract (8) from (9), using 

the error definition we have, 

−𝑎2𝑖𝜀𝑖+1 − 𝑎1𝑖𝜀𝑖 − 𝑎0𝑖𝜀𝑖−1 + 𝑐2𝑖(𝐹𝑖+1 − 𝑓𝑖+1) +
𝑐1𝑖(𝐹𝑖 − 𝑓𝑖) + 𝑐0𝑖(𝐹𝑖−1 − 𝑓𝑖−1) + 𝑇𝑖 = 0,   

  𝑖 = 1,2,… ,𝑁   

Using (10) into above equation, 

(a0i + c0iGi−1)ϵi−1 + (a1i + c1iGi)ϵi + (a2i + 
c2iGi+1)ϵi+1 − Ti = 0,  i=1,2,.... N                          (11) 

Let us write (10) in matrix form as, 

𝑫𝜺− 𝑻 = 𝟎                                (12) 

where 

𝑫 = 

(

𝑎11 + 𝑐11𝐺1 𝑎21 + 𝑐21𝐺2
𝑎02 + 𝑐02𝐺1 𝑎12 + 𝑐12𝐺2

 0
𝑎22 + 𝑐22𝐺3                        

  
0      

⋱                           
𝑎0𝑁 + 𝑐0𝑁𝐺𝑁−1 𝑎1𝑁 + 𝑐1𝑁𝐺𝑁

)

𝑁×𝑁

 

is tridiagonal matrix, 𝜺 = [ϵ1, ϵ2, .., ϵN ]T and  T = [T1, 

T2, .., TN ]T . Let us write 𝑫 as the sum of matrices 𝑱  

and 𝑬 i.e. 𝑫 = 𝑱 + 𝑬  where 

𝑱 = (

𝑎11 𝑎21
𝑎02 𝑎12

 0
𝑎22            

  
0      

⋱                           
𝑎0𝑁 𝑎1𝑁

)

𝑁×𝑁

 

and 

𝑬 = 

(

𝑐11𝐺1 𝑐21𝐺2
𝑐02𝐺1 𝑐12𝐺2

 0
𝑐22𝐺3                        

  
0      

⋱                           
𝑐0𝑁𝐺𝑁−1 𝑐1𝑁𝐺𝑁

)

𝑁×𝑁

 

Let    𝑚∗ = min
1≤𝑖≤𝑁

𝐾2ℎ𝑖
2 ,  𝑚∗ = max

1≤𝑖≤𝑁
𝐾2ℎ𝑖

2   and     4.5 <

𝑚∗ < 𝑚
∗ < 6. 

Also, let 𝑚∗ > max
1≤𝑖≤𝑁

1

12(1+𝑟𝑖)
3. It is easy to prove that 

𝑎01 > −1, 𝑎2𝑖 > −1 and 𝑎1𝑖 > 2  for  i = 1, 2, .., N .  

Also, it can be verified that 𝑬 ≥ 0. Thus we can verify 

that 𝑫 > 𝐽. But 𝑱 is invertible and moreover 𝑱−𝟏 > 0 

[13,14]. So we have 𝑱−𝟏 > 𝑫−𝟏. Let Si denotes the 

sum of the elements of the ith row of the matrix 𝑱  
where 

𝑆𝑖

=

{
 
 
 
 

 
 
 
 

24(3 +  3ri  + ri
2)K2hi

2

+ri(1 + ri)(K
2hi

2 − 6 − 6ri − 6ri
2 )K4hi

4

− 144ri  ,   i = 1 

ri(1 + ri)(K
4hi

4 − 6(1 + ri + ri
2 )K2hi

2

+144),       2 ≤ i ≤ N − 1

24(3 +  3ri  + ri
2)K2hi

2

+ri(1 + ri)(K
2hi

2 − 6 − 6ri − 6ri
2 )K4hi

4

− 144ri  ,   i = N

 

Let us assume 𝑆∗ = min
1≤𝑖≤𝑁

Si , then we 

                ‖𝑱−𝟏‖ ≤
1

𝑆∗
                                                (13)  

Thus (12) and (13), we have  

‖𝜺‖ ≤
1

𝑆∗
‖𝑻‖                                    (14)     

Thus, from (6) and (14) it follows that ‖𝜺‖ →0 as  

ℎ𝑖 → 0.  We conclude that method (3) converges and 

the order of the convergence of method (3) is at least 

cubic. 

VI. NUMERICAL EXPERIMENTS AND RESULTS 

We have considered linear and nonlinear model 
problems to perform the numerical experiment. In 

each model problem, we took constant  𝑟𝑖 =
ℎ𝑖+1

ℎ𝑖

 . In 

the computation of maximum absolute error MAEU, 
we have used the following formula, 

𝑀𝐴𝐸𝑈 = max
1≤𝑖≤𝑁

|𝑢(𝑥𝑖) − 𝑢𝑖| 

and in the estimation of the order of the convergence   
(ON ) of the method (3), we used   the following 
formula 

(𝑂𝑁) = log m(
𝑀𝐴𝐸𝑈𝑁

𝑀𝐴𝐸𝑈(𝑚𝑁)
)  

where m can be estimated by considering the ratio of 
N ′s. 

We have applied respectively Gauss-Seidel and 
Newton-Raphson method for the solution of systems 
of linear equations and non-linear equations result in 
the discretization of the problems using the proposed 
algorithm (3).   The solutions are computed on N 
nodes and the iteration continued until either the 
number of iterations reached 102 or the maximum 
difference between two successive iterates is less than 
10−8. All the computations were performed on a 
Windows 2007 Ultimate operating system in the 
GNU FORTRAN environment version 99 compiler 
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(2.95 of GCC) on Intel Core i3-2330M, 2.20 GHz 
PC. 

Problem 1. The linear model problem given by 

u′′(x) + K2u(x) = K2x2 + 2, 0 < x < 1   

subject to boundary conditions 

u(0) = 0,  and   u(1) = 1 + sin(K). 

The constructed /exact analytical solution of the 
problem is u(x) = sin(Ku) + x2. The computed  

MAEU for different values of N and RI are 
presented in Table 1. Also no. of iterations Iter. 
required to achieve MAEU presented there in Table 1. 

Problem 2. The linear model problem is given by 

 

 

u′′(x) + K2u(x) = u(x) − 2K exp(−x) cos (Kx),                                                                           
0 < x < 1  

 subject to boundary conditions 

u(0) = 0  and  u(1) = exp(−1) sin(K). 

The constructed /exact analytical solution of the 
problem is u(x) = exp(−x) sin(Kx). The computed 
MAEU for different values of N and RI are 
presented in Table 2. Also no. of iterations Iter. 
required to achieve MAEU presented there in Table 
2. 

Problem 3. The nonlinear model problem given by 

u′′(x) + K2u(x) = K2u(x)(1 − exp(Kx)u(x) + 2 
exp(2Kx)u2(x)), 0 < x < 1  

subject to boundary conditions 

𝑢(0) =
1

2
     and  𝑢(1) =

1.0

1 + exp (𝐾)
 

The constructed/exact analytical solution of the 

problem is 𝑢(𝑥) =
1.0

1+exp (𝐾𝑥)
 . The computed MAEU 

for different values of N and ri are presented in Table 
3. Also no. of iterations Iter. required to achieve 
MAEU presented there in Table 3.

Table 1: Maximum absolute error (Problem 1). 

 

K 

 

ri 

 
N 

4 8 16 32 

 

 

1.5 

.85 MAEU .12797039(-3) .22780743(-4) .72150506(-5) .44405488(-5) 

Iter. 13 35 29 22 

.90 MAEU .79272184(-4) .10766746(-4) .29562800(-5) .70078812(-6) 

Iter. 12 26 27 8 

.95 MAEU .43739357(-4) .48330880(-5) .54639708(-6) .10074696(-5) 

Iter. 14 22 5 7 

1.00 MAEU .13470650(-4) .23841858(-6) .59604645(-7) .42915344(-5) 

Iter. 10 5 1 64 

Table 2: Maximum absolute error (Problem 2). 

 

K 

 

ri 

 
N 

4 8 16 32 

 

 

.50 

.85 MAEU .25399029(-4) .50574936(-5) .18551946(-5) .12591481(-5) 

Iter. 13 23 40 33 

.90 MAEU .14975667(-4) .23841858(-5) .55134296(-6) .17881393(-6) 

Iter. 11 23 28 13 

.95 MAEU .81211329(-5) .92387199(-6) .59604645(-7) .29802322(-7) 

Iter. 10 19 6 2 

1.00 MAEU .20265579(-5) .74505806(-7) .14901161(-7) .29802322(-7) 

Iter. 8 6 1 1 
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Table 3: Maximum absolute error (Problem 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Numerical results for different values of N and ri for 
model problem 3 is presented in table 3. We 
observed from the computational results that without a 
change in ri, the decrease in hi results decreases with 
an MAEU and an increase in K results increase in 
MAEU.  

As we decrease the value of ri from .95 to less than 
.95 in the same value of K = 2.5 and K = 3.5, 
there is a substantial reduction in the order of the 
convergence of the proposed algorithm.  Thus, we 
conclude that the order of the method depends on the 
choice of the ri. Also, the accuracy in numerical 
solution ui decreases as ri decreases. We observed  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

similar observations in the numerical result of 
problem 1 and problem 2. However, we find 
algorithm (3) is convergent 

VII. CONCLUSION 

An algorithm using finite differences for the numerical 
solution of the Helmholtz type equation and 
corresponding two-point boundary value problems 
with non-uniform step length i.e. variable step length 
has developed.  In the development of the algorithm, 
we transformed the continuous problem into a 
discrete problem, i.e. the differential equation 
problem (1) into a system of algebraic equations (3). 

 

K 

 

ri 

 N 

4 8 16 32 

 

 

 
 

2.5 

.85 MAEU .50046929(-4) .86816253(-5) .29637317(-5) .21018782(-5) 

Iter. 6 12 20 17 

.90 MAEU .36545040(-4) .39168362(-5) .76874841(-6) .28658795(-6) 

Iter. 7 13 8 3 

.95 MAEU .26586760(-4) .17725698(-5) .24027636(-6) .94465300(-7) 

Iter. 7 12 5 14 

1.0 MAEU .19564573(-4) .11765405(-5) .85043219(-7) .18604103(-7) 

Iter. 6 10 6 1 

 

 

 
 

3.5 

.85 MAEU .14678681(-3) .36329031(-4) .13210631(-4) .96381737(-5) 

Iter. 5 6 12 15 

.90 MAEU .10349760(-3) .18275507(-4) .35319379(-5) .15788354(-5) 

Iter. 5 10 18 14 

.95 MAEU .72204180(-4) .86282880(-5) .72915776(-6) .28251156(-6) 

Iter. 5 9 9 13 

1.0 MAEU .68829424(-4) .41220310(-5) .29232848(-6) .28144444(-6) 

Iter. 6 11 6 12 

 

 

4.5 

.95 MAEU .64944543(-4) .25401225(-4) .25228351(-5) .45036066(-6) 

Iter. 7 7 13 10 

1.0 MAEU .18576792(-3) .12108090(-4) .81300982(-6) .91218730(-7) 

Iter. 7 8 6 5 

 

 
5.5 

.95 MAEU .16360165(-3) .57584149(-5) .66526718(-5) .11472596(-5) 

Iter. 5 10 10 17 

1.0 MAEU .32609457(-3) .26916419(-4) .16365996(-5) .17088547(-6) 

Iter. 4 8 14 8 

 
 

6.5 

.95 MAEU .45986887(-3) .75560478(-4) .14123988(-4) .26245261(-5) 

Iter. 7 7 8 10 

1.0 MAEU .10475870(-2) .44738903(-4) .31817165(-5) .32630444(-6) 

Iter. 5 6 13 7 

 

 

7.5 

.95 MAEU .12349439(-2) .74402131(-4) .25594589(-4) .51407492(-5) 

Iter. 7 8 7 10 

1.0 MAEU .21523978(-2) .96857053(-4) .56619497(-5) .41037129(-6) 

Iter. 4 6 11 7 
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The proposed algorithm (3) delivers a decent 
approximate numerical solution of the model 
problems considered in numerical experiments with 
non-uniform/variable step size. The numerical results 
for the model problems showed that the proposed 
algorithm is computationally effective and exact. 
The order of convergence of the proposed algorithm 
depends on ri, the ratio of step sizes. The order of the 
convergence very close to three as the value of ri 
approaches 1. Following the thought presented in the 
present article, there is the possibility to develop 
algorithms for the numerical solution of higher-order 
differential equations with internal boundary 
condition. Works in these directions are in 
advancement. 
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