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ABSTRACT: Ovarian cancer (OC) is considered the fifth leading cause of death among women 

globally, and early detection of ovarian cancer symptoms will be vital for ovarian cancer treatment. Its 

detection via image-based clinical diagnosis is often prone to misclassification. Therefore, this study 

proposes using machine learning methods to reduce such errors and deliver faster and more accurate 

results. Two ovarian tumor datasets consisting of ultrasound images were analyzed using nine machine 

learning classification algorithms. To reduce the extracted features derived from four pre-trained 

convolutional networks and five texture-based features to fewer than 50. A hierarchical feature 

selection method was proposed, combining the ReliefF filter algorithm in the first stage and ten 

metaheuristic algorithms in the second stage. The results showed that ensemble algorithms, such as 

LightGBM, achieved a high accuracy of over 95% in diagnosing various types of ovarian tumors using 

both 2D and 3D ultrasound images. Among the feature selection approaches, the combination of ReliefF 

and Quantum Approximate Neighbourhood Analysis (QANA) yielded the best performance. 

Experimental findings on real datasets show that the suggested method not only preserves data 

confidentiality but also yields excellent performance in early and precise detection of OC. 

Keywords: ovarian cancer tumor, ultrasound imaging, hierarchical feature selection, deep learning features, texture 

features, metaheuristic algorithms.  

I. INTRODUCTION 
  Ovarian cancer is the fifth most common cancer and one of the leading causes of cancer-related death in 

women worldwide, which is defined by the unchecked growth of aberrant cells in ovarian tissue [1]. Many 
patients with early-stage ovarian cancer show no symptoms at all. Even when symptoms do appear, they 
are often nonspecific and ambiguous, resembling those of other illnesses. Consequently, early detection 
through routine screening is highly constrained. OC is known as "the silent killer" because it is often detected 
at an advanced phase [2]. Research shows that early diagnosis can raise survival rates by roughly 10% to 
30%, highlighting the serious need for intelligent systems capable of detecting diseases early [3]. 

At the moment, predictive models based on imaging have shown encouraging findings in the 
classification of ovarian tumors. These methods improve the precision of disease diagnosis and prognosis by 
utilizing case-based reasoning and avoiding the drawbacks of traditional diagnostic algorithms. 
Additionally, by minimizing human error, they are essential in lowering patient mortality [4-7]. 
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In the classification of ovarian tumors, artificial neural networks (ANNs) have demonstrated significant 
effectiveness. Current studies have employed deep learning-based approaches to further improve 
classification outcomes [8,9]. In [10], a deep convolutional neural network (DCNN), inspired by the 
pretrained AlexNet method, was proposed for the forecasting and subtyping of OC using histopathological 
images. The network architecture was optimized by inserting a layer of max-pooling after every pair of 
convolutional layers and substituting the Rectified Linear Unit (ReLU) activation function with the 
exponential linear unit (ELU). This enhanced design achieved a prediction accuracy of 83.93% for both 
ovarian cancer detection and subtype classification. Similarly, studies [2,11] introduced methods based on 
the pre-trained Visual Geometry Group 16-layer network (VGG-16) and Xception CNN models, which 
attained ovarian cancer classification accuracies of 84.64% and 0.85, respectively. Another investigation [12] 
utilized ten CNN models including GoogleNet, Residual Network (ResNet), and AlexNet to evaluate their 
performance. After training, ensemble learning was applied to the top three models, demonstrating the best 
trade-off between computational cost and classification time. The highest achieved accuracy among the ten 
deep networks was 90.51%. 

One of the critical limitations of such approaches is the insufficient consideration of textural features, 
which are highly informative for differentiating tumor types but are often overlooked [9, 12]. These features 
are generally captured in the initial convolutional layers and tend to be diminished or lost due to 
dimensionality reduction through successive pooling layers. Consequently, deep networks may fail to retain 
essential tumor-specific details, leading to suboptimal classification outcomes. Furthermore, the fine-grained 
classification of ovarian tumor subtypes has not been addressed by the majority of previous studies, which 
have concentrated on binary classification (benign vs. malignant) using Magnetic Resonance Imaging (MRI) 
images. 

 Unlike earlier approaches, this study makes use of ultrasound imaging, which has a number of benefits 
over MRI. Ultrasound is more widely available, more affordable, and appropriate for use in both remote and 
routine clinical settings. Unlike MRI, it is safe for all patients, including those with metallic implants, and 
enables real-time imaging for dynamic evaluation of ovarian structures. Additionally, it is ideal for routine 
monitoring due to its non-invasive nature, and when used appropriately, it can differentiate between benign 
and malignant masses. Another key distinction of this study lies in the integration of nine distinct feature 
categories, including five textural descriptors and four deep learning-based features, thereby facilitating 
accurate identification of ovarian tumor types. 

Even though deep learning models have made great strides in the detection of ovarian cancer, three main 
issues are still not fully addressed. Firstly, the majority of previous studies has primarily focused on MRI 
images, which are more expensive, harder to obtain, and inappropriate for routine or remote screening. 
Second, previous researches have mostly ignored the fine-grained differentiation of tumor subtypes, which 
is essential for accurate treatment planning in favor of binary classification (benign vs. malignant). Third, 
during feature extraction, textural features which are highly informative for tumor characterization have 
often been neglected or underutilized in conventional CNN architectures. These gaps highlight the need for 
an integrative approach that uses both deep and textural features on ultrasound images data to enhance 
diagnostic accuracy, interpretability, and clinical applicability. By combining a hybrid feature-based 
framework with hierarchical feature selection and a variety of machine learning classifiers, this study 
overcomes these drawbacks. 

Unlike prior studies that predominantly relied on MRI images data and binary classification frameworks, 
this study introduces several novel contributions. First, it is among the few attempts to employ ultrasound 
imaging for ovarian tumor classification, making the approach more accessible, cost-effective, and clinically 
practical. Second, the framework integrates nine distinct categories of features five textural descriptors and 
four deep learning-based representations thus bridging the gap between handcrafted and learned features, 
which are often treated separately in existing research. Third, the research offers a methodical way to keep 
the most discriminative features while cutting down on redundancy by employing a hierarchical feature 
selection approach that blends ReliefF with ten metaheuristic optimization algorithms. Lastly, the 
comparison of the suggested method with nine cutting-edge classifiers demonstrates its generalizability and 
resilience. When taken as a whole, these contributions create a novel approach that goes beyond current 
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ovarian cancer detection systems and provides a scalable framework for implementation in actual healthcare 
environments. The key contributions of this study are listed as follows: 
• Improved diagnostic accuracy: The proposed method enhances the diagnostic accuracy for OC, 

surpassing the performance limitations of MRI-based methods (with an accuracy of 85%) and reducing 
human errors. By incorporating nine feature categories (five textural and four deep). 

• Effectiveness of machine learning algorithms: The performance of nine classifiers is investigated, 
including Random Forest (RF), Decision Tree (DT), k-Nearest Neighbors (KNN), eXtreme Gradient 
Boosting (XGBoost), Light Gradient Boosting Machine (LightGBM), Categorical Boosting (CatBoost), 
Attention-based Multilayer Perceptron (MLP), and Naive Bayes (NB). 

• Evaluation of hierarchical feature selection: A hierarchical feature selection strategy is employed, 
comprising the ReliefF algorithm at the first level, followed by ten metaheuristic optimization algorithms 
at the second level. These include the Improved Grey Wolf Optimizer [13], QANA [14], Chinese Pangolin 
Algorithm [15], a hybrid Firefly Particle Swarm Optimization method [16], Whale Optimization 
Algorithm [17], Zebra Optimization Algorithm [18], Secretary Bird Algorithm [19], Wild Horse Optimizer 
[20], Hippopotamus Algorithm [21], and Marine Predators Algorithm [22]. 
The rest of this paper is organized as follows: Section 2 offers the materials and methods employed in the 

proposed study. Section 3 reviews the related literature. The suggested methodology is presented in Section 
4, and the findings analysis and interpretability of AI are the main topics of Section 5. Lastly, Section 6 offers 
suggestions for further study, methods for improvement, and a thorough conclusion. 

II. MATERIALS AND METHODOLOGY 
The approach consists of efficient feature extraction (FE) and selection processes, which are followed by 

the application of several classification models designed to distinguish between various ovarian tumor types.  
Several assessment metrics, including accuracy, F1-score, precision, recall, and specificity, are carefully 
utilized and discussed in order to assess the predictive performance of these models. Each classifier's 
working mechanism is also covered in detail to give readers a comprehensive understanding of the 
classification procedure as a whole. 

1. BASELINE CLASSIFICATION ALGORITHMS FOR COMPARATIVE ANALYSIS 
A collection of sophisticated tree-based ensemble learning algorithms was used in this study to increase 

model generalization and classification accuracy. While XGBoost and LightGBM, as gradient boosting 
techniques, provide high predictive power with controls to prevent overfitting, Random Forest and Extra 
Trees improve prediction robustness by building diverse ensembles of decision trees. By managing missing 
values and handling categorical features natively, CatBoost enhances this framework even more and 
provides increased accuracy without requiring a lot of preprocessing [21-25]. 

 
 
 
 
 
 
 

 
 
 
 
 

 
 

FIGURE 1. Overview of tree-based ensemble and baseline classification algorithms. 
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Baseline classifiers Decision Tree, K-Nearest Neighbours, and Naïve Bayes were also used for 
comparative analysis. Despite their simplicity, these algorithms offer competitive performance and 
interpretable models, making them valuable standards by which the efficacy of more intricate ensemble 
approaches can be assessed [26-28]. An overview of the tree-based ensemble and baseline classification 
algorithms used in this study is presented in Figure 1. 

2. DEEP FEATURE EXTRACTION USING TRANSFER LEARNING 
Transfer learning allows the reuse of pre-trained models on related tasks, reducing training time and 

computational cost while maintaining strong performance with limited labeled data [26].  Three effective 
convolutional neural network architectures were used as feature extractors in this study: ShuffleNet, 
MobileNet, and ResNet (ResNet-50, ResNet-101). ResNet facilitates the training of deep networks through 
residual connections [27], ShuffleNet provides lightweight efficiency using group convolutions with channel 
shuffling [28], and MobileNet achieves high accuracy in resource-constrained environments through 
depthwise separable convolutions [29]. The categorization of pre-trained CNN architectures employed for 
feature extraction is illustrated in Figure 2. 

 

 
FIGURE 2. Categorization of pre-trained CNN architectures for feature extraction. 

3. TEXTURE FEATURE EXTRACTION 
As illustrated in FIGURE 3, five types of local texture features were extracted in the proposed model, 

which are detailed in the following sections. 
 

 

FIGURE 3. Five types of local texture features were extracted in the proposed model. 

4. LOCAL BINARY PATTERN TEXTURE FEATURE  
The Local Binary Pattern (LBP) is a prominent indicator in image processing and computer vision, widely 

used for characterizing and extracting local texture features from images [30, 31]. This descriptor is computed 
for each neighborhood in the image based on Equation (1): 

 

𝐿𝐵𝑃(𝑃,𝑅) = ∑𝑠(𝑔𝑖 − 𝑔𝑐)2
𝑖 , 𝑤ℎ𝑒𝑟𝑒 𝑠(𝑥) = {

0    𝑖𝑓 𝑥 < 0
1    𝑖𝑓 𝑥 ≥ 0

𝑃−1

𝑖=0

 (1) 

 
In Equation (1), 𝑃  refers to the number of neighboring points surrounding the center, 𝑅 represents the 

radius of the neighborhood, 𝑔𝑖 corresponds to the intensity of the neighboring points, and 𝑔𝑐 is the intensity 
of the central point. The function 𝑠 is the sign function [30, 31]. 
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5. HARALICK TEXTURE FEATURES 
The gray-level co-occurrence matrix (GLCM), a two-dimensional mapping that documents the frequency 

of simultaneous occurrence of pixel pairs with specific intensity values (positive or negative) at specific 
spatial offsets within a given image region, is the source of Haralick features. A thorough examination of the 
texture of the image is made possible by the co-occurrence matrix's structure, which is based on pixel pairs 
and their spatial relationships. Key Haralick features include energy, contrast, correlation, information 
measure of correlation, and entropy, whose mathematical definitions are provided in Equations (2-5) [32]: 

𝐸𝑛𝑒𝑟𝑔𝑦 =∑𝑃(𝑖, 𝑗)2

𝑖,𝑗

 
(2) 

 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =∑(𝑖, 𝑗)2𝑃(𝑖, 𝑗)

𝑖,𝑗

 (3) 

𝐶𝑜𝑟𝑟𝑖𝑙𝑎𝑡𝑖𝑜𝑛 =∑
(𝑖 − 𝜇𝑖)(𝑗 − 𝜇𝑗)𝑃(𝑖, 𝑗)

𝜎2
, 𝑤ℎ𝑒𝑟𝑒

{
 
 

 
 𝜎 =∑(𝑖 − 𝜇)2𝑃(𝑖, 𝑗)

𝑖,𝑗

𝜇 =∑𝑖𝑃(𝑖, 𝑗)

𝑖,𝑗

 

𝑖,𝑗

 
(4) 

𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 =∑
𝑃(𝑖, 𝑗)

1 + |𝑖 − 𝑗|
𝑖,𝑗

 
(5) 

In Equations (2) to (5), 𝑃(𝑖, 𝑗) denotes the joint probability of the distribution of two gray stages 𝑖 and 𝑗 in 
neighboring positions [32]. 

6. PYRAMID OF ORIENTED GRADIENT HISTOGRAMS 

The Pyramid of Oriented Gradient Histograms (POGH) is an advanced image descriptor developed 
based on the fundamental Histogram of Oriented Gradients (HOG) algorithm. In this approach, the image 
is initially partitioned into smaller, localized regions, and a histogram of gradient orientations is 
independently computed for each region. These histograms are then hierarchically aggregated in a 
pyramidal structure, where higher-level histograms are derived by combining the finer, local histograms 
from lower levels [33]. 

7. MEDIAN BINARY PATTERN AND MEDIAN TERNARY PATTERN 
The Local Binary Pattern (LBP) is expanded upon by the Median Binary Pattern (MBP). This method 

computes the median gray-scale value, 𝑀𝑐, within a 3 × 3 local neighborhood that is defined surrounding 
each pixel. The 8-bit binary code of the central pixel is then generated through the intensity values of the 
neighboring pixels with the mid-value 𝑀𝑐. This comparison process results in the binary code MBP, 
computed using Equation (6) [34]: 

 

𝑀𝐵𝑃(𝑥𝑐 , 𝑦𝑐) = ∑ 𝑠(𝑖𝑝) × 2
𝑝, 𝑤ℎ𝑒𝑟𝑒 𝑠(𝑥) = {

1    𝑖𝑓 𝑥 < 𝑀𝑐
0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑃−1

𝑝=0

 (6) 

 
Here, 𝑀𝑐 denotes the median gray-level value of the local neighboring pixels surrounding the central 

pixel located at (𝑥𝑐 , 𝑦𝑐), and (𝑖𝑝) corresponds to the gray-level intensity of the local neighboring pixels [34]. 
In the Median Ternary Pattern (MTP), a 3 × 3 local neighborhood is initially defined surrounding each 

pixel, and the median gray-level value of the nine neighboring pixels is computed. The MTP code is then 
generated based on this value using Equation (7) [34]: 

 

𝑆𝑀𝑇𝑃(𝑣) = {

1                         𝑣 > 𝑀𝑐 + 𝑡
0        𝑀𝑐 − 𝑡 ≤ 𝑣 ≤ 𝑀𝑐 + 𝑡
−1                       𝑣 < 𝑀𝑐 − 𝑡 

 (7) 
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Here, 𝑣 represents the gray-level intensity of a neighboring pixel, 𝑀𝑐 denotes the local midi-value, and 𝑡 
is a user-defined threshold. 

8. MSWLD: MULTI-SCALE WEBER LOCAL DESCRIPTOR 
The Multi-Scale Weber Local Descriptor (MSWLD) quantifies the relative contrast between a pixel and its 

neighboring pixels by leveraging Weber’s law of perceptual intensity differences. This descriptor comprises 
two principal components: differential excitation, which captures the local intensity variations, and 
orientation, which reflects the angular direction of these variations [35]. 

The differential excitation is computed as the ratio of responses from two convolution filters and is 
mapped to the range [−𝜋/2, 𝜋/2] using the arctangent function. This angle is then quantized into 𝑇1 discrete 
bins. For the orientation component, the horizontal-to-vertical gradient ratio is derived using Sobel filters. 
The resulting orientation angle is transformed into the range [0,2𝜋] and further quantized into 𝑇2 directional 
bins. Finally, the combination of these components forms a two-dimensional histogram {𝑊𝐿𝐷(𝜉𝑖, 𝜓𝑗), where 
each cell represents the frequency of a specific excitation level at a given direction. To simplify representation, 
this 2D histogram is linearized into a one-dimensional feature vector of length 1 × 𝑇2, effectively encoding 
the texture pattern across different scales and orientations [35]. 

9. FEATURE SELECTION: BASED ON METAHEURISTICS ALGORITHMS 
In order to reduce dimensionality and enhance the performance of machine learning models, feature 

selection is essential. Current techniques can be broadly divided into three categories: filter, wrapper, and 
embedded.  Wrapper-based approaches, especially those that use metaheuristic algorithms, have garnered 
a lot of attention because of their accuracy and adaptability, even though filter methods depend on statistical 
measures and embedded methods incorporate feature selection during model training.  Intelligent search 
strategies are used by metaheuristics, such as swarm intelligence-based methods like Particle Swarm 
Optimization (PSO) and evolutionary algorithms like Genetic Algorithm (GA), to find discriminative feature 
subsets.  Keeping a healthy balance between exploring new areas of the search space and taking advantage 
of promising solutions is crucial to their efficacy. 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 4. A generic diagram of the metaheuristic feature selection algorithm [39]. 
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The general structure of metaheuristic approaches typically includes four main phases: initialization of 
the population, fitness evaluation, population update, and the application of termination criteria [36,37]. 
Several prominent algorithms utilized in this study include the Marine Predators Algorithm [38], the Whale 
Optimization approach [18], Wild Horse Optimizer [21], QANA Optimization method [15], Secretary Bird 
Algorithm [20], Firefly-PSO [17], Grey Wolf Optimizer [14], Zebra Optimization Algorithm [19], 
Hippopotamus Algorithm [22], and the Chinese Pangolin Algorithm [16]. A general flow diagram 
illustrating the metaheuristic-based feature selection process is presented in Figure 4. 

III. RELATED WORKS 
Although medical imaging technologies have advanced significantly, more work is still needed in terms 

of clinical integration and practical application. More than just technology improvements are needed to make 
the shift to "smart healthcare"; fundamental adjustments must be made in engineering domains as well as in 
response to evolving clinical standards and requirements. Handling the distinct characteristics of each 
imaging system while also meeting the new demands of modern healthcare, where data-driven approaches 
like artificial intelligence and machine learning are crucial, is therefore the primary challenge. 

In this context, various studies have been conducted. For instance, in this study [40] proposed a hybrid 
model that merges clinical data with ultrasound imaging for the identification of polycystic ovary syndrome 
(PCOS). Utilizing a deep neural network to analyze ultrasound images, they achieved an accuracy of 84.81% 
in distinguishing between polycystic and non-polycystic ovaries. In another study [41] employed Otsu’s 
thresholding and the Chan-Vese segmentation method to detect and segment polycystic ovaries, attaining 
an accuracy of 89.93% for binary classification using ultrasound data. In [42], leveraging transfer learning 
with deep convolutional networks such as AlexNet, Inception V3, ResNet50, and VGG16, developed a 
predictive system for PCOS, achieving an accuracy of 93% in binary classification. Similarly, this study [43] 
utilized convolutional neural networks to build a precise diagnostic model, reaching an accuracy of 83%, 
although this approach, like others, focused solely on binary classification. 

On a different front, [44] applied a machine learning method to evaluate the efficacy of treatment 
strategies. Additionally, [45] investigated five approaches - CART, SVM, Naive Bayes, logistic regression, 
and multilayer perceptron (MLP) - to predict PCOS, with the primary aim of eliminating expensive and time-
consuming clinical features while delivering a cost-effective and accurate model. Their findings showed that 
the MLP approach yielded optimal performance, with an accuracy of 93%. In another study, the authors [46] 
introduced a hybrid model for PCOS detection that involved preprocessing ultrasound images using a 
bilateral adaptive filter and analyzing them with a novel deep neural architecture called AResUNet. The 
adaptive filter effectively reduced noise in the images, while the AResUNet architecture demonstrated 
adaptability to both 2D and multimodal medical data. The method achieved an accuracy of 97% on the 
MMOTU dataset. 

In [47] employed the Extreme Gradient Boosting algorithm was employed for the diagnosis of polycystic 
ovary syndrome (PCOS). To address the issue of data imbalance, they utilized the Synthetic Minority Over-
sampling Technique (SMOTE) and achieved an accuracy of 96.03%. Similarly, this study [48] evaluated 
machine learning algorithms using clinical data and found that the ensemble-based Random Forest 
algorithm surpassed basic machine learning methods, yielding an accuracy of 93.25%. In [49] investigated 
the use of seven different machine learning algorithms for PCOS diagnosis was investigated, reporting that 
the Linear Discriminant algorithm achieved the highest accuracy, while the K-Nearest Neighbors (KNN) 
method demonstrated the highest sensitivity. 

This study [50] developed two convolutional neural network (CNN) models for diagnosing PCOS using 
ovarian ultrasound images: a custom-designed model named PCONet and a fine-tuned version of 
InceptionV3. Their results showed that PCONet achieved superior performance with an accuracy of 98.12%, 
compared to 96.56% for InceptionV3. In [51] focused on ovarian cancer detection in transgenic mice using 
Optical Coherence Tomography (OCT) images. They employed three VGG networks, a 3D CNN, and a 
convolutional LSTM model. Despite the presence of noise in OCT images, the models exhibited promising 
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performance. The LSTM-based neural network yields the best findings, with a mean Area Under Curve 
(AUC) of 0.81. 

In a 2022 study, the authors [52] proposed a novel architecture that integrates morphometric features with 
deep features extracted by a convolutional network from preprocessed images. The model achieved a 
validation AUC score of 0.99. The enhanced feature extraction stage enabled effective discrimination 
between malignant and non-malignant samples. Moreover, this study [8] developed a DCNN method for 
automating the analysis of ultrasound images, aiming to simplify ovarian cancer diagnosis compared to 
existing algorithms. Their model achieved an accuracy ranging from 83% to 87%. Lastly, this study [53] 
introduced a deep learning approach for classifying ovarian cancer in histopathological images using a 
convolutional neural network. Feature extraction was performed using the pre-trained DenseNet-201 model. 
Evaluations showed an accuracy of 0.91 and a recall of 0.9. 

Despite these developments, the textural features of medical images have not been sufficiently considered 
in many studies on the diagnosis of ovarian tumors. Relying exclusively on these features often results in the 
loss of crucial textural information during the early stages of processing. The architecture of deep neural 
networks typically reduces or eliminates these features through intermediate and final layers. This limitation 
makes it more difficult for deep networks to accurately distinguish between different kinds of ovarian 
tumors, which may result in a poor or insufficient diagnosis. Therefore, in order to enhance the performance 
of diagnostic models and the differentiation of tumor types, it is imperative to optimize the deep learning 
architecture to include detailed textural and morphometric characteristics in addition to high-level and 
superficial features. Table 1 presents a review of related work. 

Table 1. Review of related work. 

Ref. Model Data Type Performance 

[41] DNN Ultrasound imaging Acc. = 84.81% 

[41] 
Chan-Vese segmentation 

algorithm  
Ultrasound imaging Acc. = 89.93% 

[42] 
Transfer learning with 

deep AlexNet 
Ultrasound images Acc. = 93% 

[43] CNN  Ultrasound images Acc. = 83% 

[44] 
Machine learning 

algorithms 
- - 

[45] Machine learning - CART - Acc. = 93% 

[46] AResUNet Ultrasound imaging Acc. = 97% 

[47] 
Extreme gradient 

boosting 
Kaggle dataset Acc. = 96.03% 

[48] 
Ensemble-based Random 

Forest  
Clinical data Acc. = 93.25% 

[49] 
Linear Discriminant 

algorithm  
Ultrasound images Acc. = 92.60% 

[50] PCONet Ultrasound images Acc. = 98.12% 

[51] LSTM 

Optical Coherence 

Tomography (OCT) 

images 

AUC = 0.81 

[52] CNN 
immunohistochemistry 

images 
AUC = 0.99 

[8] CNN Ultrasound images Acc. = 83-87% 

[53] CNN 
Histopathological 

images 
Acc. = 0.91% 

Note: Acc. represents Accuracy, AUC represents Area Under Curve. 
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1. THEORETICAL FOUNDATION 
The design of this study is also informed by established learning and behavior change theories. From the 

perspective of adult learning theory, the proposed system directly addresses a real-world healthcare 
challenge, thereby aligning with the principle that effective learning and decision-making are problem-
centered and practically relevant. Moreover, constructivist perspectives emphasize that knowledge emerges 
from the interpretation of complex information, which in this study is facilitated by transforming raw 
ultrasound data into interpretable diagnostic insights. Lastly, the hierarchical feature selection strategy is 
supported by cognitive load theory, which helps clinicians make more accurate and effective decisions by 
highlighting the most discriminative patterns and reducing informational redundancy. These theoretical 
underpinnings support the study's methodological decisions and highlight how it can facilitate meaningful 
learning and clinical decision-making. 

IV. PROPOSED METHOD USING HIERARCHICAL FEATURE SELECTION 
This study proposes an integrated framework for the segmentation and classification of ovarian tumors 

in ultrasound images. To extract five distinct categories of texture-related features, precise tumor region 
segmentation is performed using two advanced deep learning models: UNet3++ and DeepLabV3. Following 
segmentation, the accurate classification of tumor types is achieved by fusing two complementary feature 
sets: deep features extracted from pre-trained convolutional neural networks [54, 55], and handcrafted local 
and texture-based features derived from the ultrasound images [56-58]. A hierarchical feature selection 
mechanism is then employed to refine the feature space and facilitate final tumor type recognition. The 
overall architecture of the proposed model is illustrated in Figure 5. 

1. EXTRACTION OF LOCAL TEXTURE FEATURES FROM TUMOR REGIONS 

In the initial phase of the proposed model, semantic segmentation is employed to isolate tumor area from 
the ultrasound images. The primary objective of this step is to prepare the images for the extraction of local 
and texture features specific to the tumor areas. To this end, two advanced pre-trained deep learning models, 
UNet++ and DeepLabV3++, are utilized. Both networks process input images resized to a fixed dimension of 
256 × 256 × 3. The models are fine-tuned on the uterine ultrasound dataset used in this study, employing the 
Adam enhancement method with 200 training epochs and a batch size of 2, to accurately distinguish tumor 
regions from the surrounding background. Figure 6 illustrates the segmentation of the ovarian tumor region. 

Following semantic segmentation and the isolation of tumor regions from the ultrasound images, each 
segmented tumor patch was resized to dimensions of 300 × 300 pixels. Subsequently, six categories of local 
texture features were extracted from each patch as detailed below: 
• Local Binary Pattern (LBP): For LBP extraction, the radius (R) was fixed at 1 and the number of neighbors 

(P) was set to 8. Each image produced a 256-dimensional feature vector with this setup [30, 31]. 
• Haralick Texture Features: Four statistical texture descriptors were included in this set: homogeneity, 

contrast, energy, and correlation. A Gray-Level Co-occurrence Matrix (GLCM) of size 8 × 8 was calculated 
after the image's grayscale intensity was quantized into 8 levels (Num Levels = 8). With a directional angle 
of 0°, the offset values for the row and column were set to 0 and 1, respectively. A 4-dimensional feature 
vector was produced as a result of this step [32]. 

• Pyramid Histogram of Oriented Gradients (PHOG): This descriptor had the pyramid level set to 2, the 
number of bins set to 8, and the gradient orientation angle set to 360°. The dimensionality of the resultant 
feature vector was 168 [33]. 

• Median Binary Pattern (MBP): This descriptor creates a 256-dimensional vector by capturing median-
based patterns from textured areas [34]. 

• Triple Median Pattern (TMP): As an extension of MBP, this descriptor generated a feature vector of length 
512 for each image [34]. 

• Weber Local Descriptor (WLD): For WLD extraction, the number of quantization levels for gradient 
orientations was set to 8, the differential excitation to 4, and the number of WLD scales to 1. The final 
output of this descriptor was a 32-dimensional feature vector [35]. 
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By concatenating the feature vectors from all six descriptors, a comprehensive texture representation of 
each image was obtained, resulting in a final feature vector of length 1228, formulated as follows: 

𝐹𝑖𝑛𝑎𝑙 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑉𝑒𝑐𝑡𝑜𝑟 𝐿𝑒𝑛𝑔𝑡ℎ = 256(𝐿𝐵𝑃) + 4(𝐻𝑎𝑟𝑎𝑙𝑖𝑐𝑘) + 168(𝑃𝐻𝑂𝐺) + 256(𝑀𝐵𝑃) + 512(𝑇𝑀𝑃) + 32(𝑊𝐿𝐷) = 1228 

2. DEEP FEATURE EXTRACTION FROM ENTIRE ULTRASOUND IMAGES 

To extract deep representations from the full ultrasound images, four pre-trained convolutional neural 
networks - ResNet101, ResNet50, Shuffle Net, and MobileNetV2 - were employed. Since these architectures 
require input images of size 224 × 224 × 3, the original ultrasound images were resized accordingly. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 5. The overall framework of the proposed ovarian cancer tumor detection methodology. 
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Among these, ResNet50 and Shuffle Net were specifically fine-tuned using ultrasound images from the 
two datasets utilized in this study. Fine-tuning was conducted by freezing the weights of the early layers 
and retraining only the final layers to adapt the networks to the target domain. The training process was 
performed using the Adam improver, a fixed learning rate, 30 epochs, and a mini-batch size of 128. Feature 
extraction was carried out by retrieving the output of the final fully connected layer of each network. By 
concatenating the feature vectors extracted from all networks, a final deep feature vector of length 2016 was 
obtained. 

 

   

FIGURE 6. Segmentation of the ovarian tumor region. 

3. HIERARCHICAL FEATURE SELECTION 
In medical image analysis, feature extraction is essential. Several feature extraction methods are 

frequently used to produce high-dimensional feature vectors in order to obtain thorough diagnostic insight. 
However, such increased dimensionality significantly intensifies the computational complexity and runtime 
of subsequent classification models. To deal with this limitation, an efficient feature selection strategy 
becomes essential to preserve model performance while minimizing computational burden. 

Accordingly, a hierarchical feature selection method is proposed, combining the ReliefF algorithm with 
ten distinct metaheuristic optimization algorithms. These include: Marine Predators Algorithm (MPA), 
Improved Grey Wolf Optimizer (IGWO), Whale Optimization Algorithm (WOA), Wild Horse Optimizer 
(WHO), Secretary Bird Optimization Algorithm (SBOA), Hybrid Firefly-Particle Swarm Optimization 
(FiPSO), Quantum-based (QANA), Zebra Optimization Algorithm (ZOA), Hippopotamus Optimization 
Algorithm (HO), and Chinese Pangolin Optimizer (CPO). The overall structure of the proposed hierarchical 
selection framework is illustrated in Figure 7. In this approach, deep features and texture-based features are 
first concatenated, yielding a comprehensive feature vector of length 3244, which serves as the input to the 
proposed selection pipeline. 

In the first stage of the hierarchical method, the full feature matrix is processed by the ReliefF algorithm, 
which was configured with five nearest neighbors. ReliefF estimates the importance of each feature by 
comparing its values among neighboring instances within the same class and across different classes. This 
method effectively identifies features that are highly discriminative in distinguishing between classes. 
Subsequently, the top 50 features selected by ReliefF are provided as inputs to the fitness function for 
evaluation within the metaheuristic optimization phase. In this phase, the initial population is randomly 
generated, with each individual represented as a binary vector of 50 features (columns) corresponding to the 
features retained from the ReliefF output. Consequently, the initial population matrix has a 50×50 size, with 
rows representing potential solutions (search agents) and columns representing particular features. 

 Each metaheuristic algorithm has a maximum of 500 iterations, and the initial population values are 
uniformly sampled from the interval [-100, 100]. Each algorithm looks for the ideal subset of features that 
minimizes redundancy and maximizes classification performance through iterative refinement. The fitness 
(cost) function at this stage is defined as the classification error obtained by employing the Decision Tree 
(DT) algorithm, computed according to Equation (8). Given the non-parametric nature of decision trees, their 
use as an evaluation criterion within metaheuristic optimization algorithms proves highly appropriate. This 
is because the performance of DTs is independent of input parameter tuning, allowing for a more reliable 
and robust assessment of the quality of candidate feature subsets. 

https://doi.org/10.48161/qaj.v5n3a2064
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𝐶𝑜𝑠𝑡 = 1 −
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 (8) 

 
During each iteration of the metaheuristic algorithms, after the population members are updated and 

moved toward the global optimum, the components of each individual with values greater than zero are 
identified. The corresponding indices are then extracted from the matrix of selected features, which was 
obtained from the output of the ReliefF algorithm. These indices determine the feature subset evaluated in 
that iteration. 

Subsequently, the feature matrix corresponding to the training set is provided to the Decision Tree (DT) 
approach to perform the learning process. The model then utilizes the feature matrix of the test set to predict 
the tumor type. By comparing the predicted labels with the ground truth of the test set, the classification 
accuracy for each individual in the population is computed. This accuracy is substituted into Equation (9) 
and recorded as the cost (fitness) value associated with that population member. This process is iteratively 
performed for all individuals across 500 iterations. 

 

FIGURE 7. Schematic diagram of the proposed hierarchical feature selection process. 

At the conclusion of the optimization process, the individual yielding the minimum cost value (i.e., the 
highest classification accuracy and lowest classification error) is identified as the optimal solution. This 
individual represents the indices of the most informative and discriminative features. Let 𝑥 denote the best 
individual in the population, and 𝑥𝑖 its 𝑖 −th component. The features corresponding to elements with values 
greater than zero are selected using Equation (9). The convergence curves of several metaheuristic algorithms 
employed in this framework are illustrated in Figures 8-9. 

 

𝐵𝑒𝑠𝑡 𝑚𝑒𝑚𝑏𝑒𝑟 𝑣𝑒𝑐𝑡𝑜𝑟 = 𝑖𝑛𝑑𝑒𝑥[𝑥′ > 0], [𝑥𝑖
′] = {

1      𝑖𝑓 𝑥𝑖 > 0
0     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

    (9) 

 
The output of the metaheuristic algorithms typically comprises over 20 selected features, often 

approximating N/2, where N represents the total number of features generated by the ReliefF algorithm. 
 

FIGURE 8. Convergence curve of the Marine predator algorithm. 
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FIGURE 9. Convergence curve of the improved grey wolf optimizer. 

4. TUMOR DETECTION AND CLASSIFICATION  

• The best feature subset was selected, and nine different classifiers were used for tumor detection and 
classification: K-Nearest Neighbours (KNN), Decision Tree (DT), Naïve Bayes, Random Forest (RF), 
XGBoost, Extra Trees, LightGBM, CatBoost, and Multilayer Perceptron with Self-Attention (MLP-SA). 
The KNN algorithm applied Euclidean distance and standardised Euclidean distance to the two-
dimensional and three-dimensional ultrasound datasets, respectively, and set the number of neighbours 
to 1. 

• A bagging technique was used for the Random Forest classifier, and 700 learning cycles were set. 
• Without any additional adjustments, the Naïve Bayes and Decision Tree classifiers were implemented 

with their default parameter settings. 
•  The XGBoost model was set up with 200 trees, a learning rate of 0.05, and a maximum tree depth of 7.  

An L2 regularization parameter (λ) of 1 was used, and random sampling rates for both data and features 
were set at 0.8 to reduce overfitting. 

•  There were 100 decision trees in the Extra Trees algorithm, with a maximum depth of 25.  Two samples 
were needed to split a node, and one sample was needed per leaf.  The square root of the total number of 
features was utilized to determine the number of features were taken into account at each split. 

• There were 500 trees in the LightGBM model, and the learning rate was set at 0.03. To balance accuracy 
and model complexity, the number of leaves was 64 and the maximum tree depth was 10. The minimum 
number of samples required to create a child node was fixed at 30. To reduce overfitting, 80% random 
sampling of both data and features was applied at each tree. Regularization parameters for L1 and L2 
were both set to 1. 

• A learning rate of 0.1 and 500 training iterations were used in the CatBoost algorithm.  To strike a balance 
between approach complexity and accuracy, the decision tree depth was set to 8. An early stopping 
mechanism was employed, halting training after 50 consecutive rounds without improvement to prevent 
overfitting. 

• The defined Multilayer Perceptron (MLP) network in this model consists of five layers. In the input layer, 
Z-score normalization was applied, calculated according to Equation (10). The Z-score function for a 
random variable X with mean μ and standard deviation σ is defined as follows: 

•  
 

𝑍 =
𝑋 − 𝜇

𝜎
 (10) 

 
The second layer is a fully connected layer consisting of 8 neurons. The third layer implements a self-

attention mechanism, where the number of heads is set to 8 and the key dimension is defined as 256. The 
self-attention mechanism computes attention scores between different positions within the input sequence. 
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• The fourth and fifth layers are responsible for classifying the input data and computing the error. In this 
perceptron network, the focal loss function was employed instead of the conventional cross-entropy loss. 
The focal loss function is defined by Equation (11), where γ denotes a positive focusing parameter: 

•  

𝐹𝐿(𝑝𝑡) = −𝛼𝑡(1 − 𝑝𝑡)
𝛾 log(𝑃𝑡)     𝑤ℎ𝑒𝑟𝑒 𝛼𝑡 = {

𝛼         𝑖𝑓        𝑦 = 1
1 − 𝛼     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (11) 

 
The focal loss function combines the cross-entropy loss with a modulating factor (1 − 𝑝𝑡)

𝛾, which 
enhances classification accuracy [59-61]. The deep multilayer perceptron network was trained utilizing the 
Adam optimizer with 500 epochs and a minibatch size set accordingly. Figure 10 illustrates the learning 
curves of the network on the 3D and 2D datasets, respectively. 

 

                                              (a)                                                                                     (b) 

FIGURE 10. Learning curve of the attention-based MLP on (a) 3D, (b) 2D ultrasound images. 

V. PERFORMANCE EVALUATION 
This section examines the proposed method for ultrasound imaging. It also provides detailed descriptions 

of the datasets, evaluation metrics, and comparisons with other state-of-the-art approaches. 

1. SIMULATION SETUP 

The experiments were conducted using MATLAB R2024 on a system configured to obtain simulation 
results. The hardware platform consists of an Intel(R) Core (TM) i9-11900K processor operating at 3.5 GHz, 
32 GB of RAM, and an NVIDIA GeForce RTX 3080 GPU, all running on the Microsoft Windows 10 operating 
system. 

2. IMAGE ACQUISITION 
To assess the proposed approach, the multimodal ovarian ultrasound image dataset MMOTU, publicly 

available on GitHub [62], was utilized. This dataset was originally introduced by [63]. The MMOTU dataset 
comprises two distinct subsets acquired through different imaging modalities: the OTU_2d subset containing 
1,469 two-dimensional ultrasound images, and the OTU_3d subset consisting of 170 Contrast-Enhanced 
Ultrasound (CEUS) or three-dimensional images. Both subsets include pixel-level semantic annotations and 
tumor classification labels provided by [63]. 

The data were collected from Shijitan Hospital, affiliated with Capital Medical University, encompassing 
a total of 1,639 ovarian ultrasound images from 294 patients. The distribution of images in the OTU_2d subset 
by class is as follows: mucinous cystadenoma (104), high-grade serous carcinoma (56), theca cell tumor (88), 
simple cyst (66), normal ovary (267), endometrioma (336), serous cystadenoma (219), and teratoma (336). The 
model's performance may be impacted by this noticeably unbalanced class distribution, especially since 
classes like endometrioma and teratoma have significantly more samples than classes like high-grade serous 
carcinoma or simple cyst. 

Similar to this, the OTU_3d subset shows an uneven distribution of images by class, including the 
following: simple cyst (18), normal ovary (5), mucinous cystadenoma (6), endometrioma (35), serous 
cystadenoma (40), teratoma (38), theca cell tumor (25), and high-grade serous carcinoma (9). The model's 
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ability to accurately identify some classes may be hampered by the small number of samples in those classes, 
particularly high-grade serous carcinoma, mucinous cystadenoma, and normal ovary. Table 2 represents the 
dataset partitioning. 

Table 2. The data partitioning of the MMOTU image dataset. 

Data type Categories Training data Testing data 

  Samples Patients Samples Patients 

OTU_2d 8 1000 171 469 76 

OTU_CEUS 8 70 20 100 27 

 
For this study, an ovarian tumor ultrasound dataset retrieved from GitHub was used, since it was 

benchmarked in previous studies for the classification of medical images using machine learning, making it 
accessible and reproducible. The dataset consists of 1639 images of both benign and malignant tumors, which 
captures the diversity needed for evaluating the proposed methodology. While this study’s ovarian tumor 
dataset sample size is small compared to large-scale clinical datasets, in the context of the clinical internally 
benchmarked studies, it was in line with other ovarian cancer classification studies and was enough to 
robustly measure the system’s performance. Having an open dataset increases the reproducibility and 
comparability of the teamwork results across diverse research groups. Regardless of this, the results have 
limited their relevance for routine clinical practice, and further research using datasets from numerous 
institutions that better capture real-world patient demographics is necessary to validate the results. 

For this research, no observation checklists or other self-created tools were used. Instead, the main source 
of data was a publicly available ultrasound dataset. The accuracy of this dataset is justified by its use in peer-
reviewed research, where it was used to benchmark the performance of machine learning algorithms in 
medical imaging evaluation. The dataset includes images with pre-labels assigned by clinical specialists, 
which enhances the precision of the diagnosis and reduces labeling bias. Reliability was ensured by the 
imaging protocols used during data collection and the ground truth verifiable model with expert 
adjudication. In addition, the fact that the dataset was publicly available increases the transparency of the 
research and the possibility of reproducibility which strengthens the reliability and external validity of the 
study. 

3. EVALUATION METRICS 

To assess the performance of the proposed approach, the metrics of accuracy, recall, precision, specificity, 
and F1-score were employed. These metrics were calculated based on Equations (12-16). 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (12) 

  

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (13) 

  

𝐹𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =
2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (14) 

  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (15) 

  

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
 (16) 
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4. EVALUATION OF VARIOUS FEATURE SELECTION METHODS ON OTU_CEUS DATA 
A key component introduced in the proposed model is the hierarchical feature selection framework. In 

this section, ten different filter-based methods combined with the ReliefF feature selection algorithm were 
employed. To identify the most effective approach, comprehensive evaluations were conducted on both 
datasets. The comparative results of this experiment, performed on the 3D ultrasound data, are presented in 
Table 3. 

Table 3. Evaluation of different feature selection and classification methods on OTU_CEUS Data. 

Feature 

selction 

methods 

Algorithm Accuracy Recall Precision F1_score Specificity 
Area Under 

Curve (AUC) 

MPA 

KNN 0.910 0.931 0.931 0.928 0.985 0.941 

Decision Tree 0.870 0.777 0.869 0.879 0.978 0.941 

Naive Bayes 0.710 0.627 0.711 0.704 0.949 0.977 

Random Forest(Bagging) 0.880 0.822 0.830 0.815 0.980 0.979 

Sel-Attention MLP 0.900 0.923 0.923 0.922 0.982 0.996 

XGBoost 0.830 0.745 0.715 0.832 0.972 0.984 

ExtraTree 0.680 0.615 0.582 0.673 0.944 0.909 

LightGBM 0.900 0.833 0.933 0.854 0.982 0.977 

CatBoost 0.840 0.749 0.727 0.849 0.972 0.961 

IGWO 

KNN 0.930 0.916 0.951 0.928 0.988 0.912 

Decision Tree 0.880 0.795 0.917 0.826 0.979 0.911 

Naive Bayes 0.710 0.547 0.779 0.708 0.949 0.931 

Random Forest(Bagging) 0.850 0.756 0.886 0.778 0.973 0.983 

Sel-Attention MLP 0.930 0.919 0.920 0.912 0.988 0.991 

XGBoost 0.880 0.773 0.912 0.806 0.979 0.970 

ExtraTree 0.680 0.611 0.564 0.655 0.944 0.912 

LightGBM 0.890 0.758 0.867 0.874 0.981 0.965 

CatBoost 0.900 0.800 0.883 0.904 0.983 0.960 

WHO 

KNN 0.910 0.921 0.948 0.924 0.984 0.952 

Decision Tree 0.890 0.908 0.872 0.863 0.982 0.934 

Naive Bayes 0.740 0.647 0.782 0.834 0.954 0.916 

Random Forest(Bagging) 0.910 0.913 0.913 0.896 0.985 0.977 

Sel-Attention MLP 0.890 0.906 0.936 0.909 0.981 0.967 

XGBoost 0.870 0.886 0.840 0.830 0.979 0.985 

ExtraTree 0.690 0.660 0.638 0.619 0.946 0.919 

LightGBM 0.920 0.884 0.909 0.886 0.986 0.993 

CatBoost 0.830 0.778 0.744 0.749 0.972 0.982 

QANA 

KNN 0.940 0.954 0.950 0.951 0.990 0.935 

Decision Tree 0.950 0.843 0.954 0.966 0.992 0.971 

Naive Bayes 0.850 0.759 0.901 0.885 0.972 0.997 

Random Forest (Bagging) 0.930 0.860 0.888 0.870 0.988 0.984 

Sel-Attention MLP 0.970 0.977 0.974 0.974 0.995 0.993 

XGBoost 0.970 0.979 0.977 0.977 0.995 0.997 

ExtraTree 0.690 0.660 0.706 0.631 0.946 0.905 

LightGBM 0.950 0.880 0.898 0.886 0.992 0.989 

CatBoost 0.890 0.819 0.793 0.801 0.982 0.986 

SBOA 

KNN 0.830 0.769 0.853 0.785 0.970 0.876 

Decision Tree 0.770 0.682 0.775 0.762 0.961 0.839 

Naive Bayes 0.700 0.627 0.751 0.807 0.946 0.995 
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Feature 

selction 

methods 

Algorithm Accuracy Recall Precision F1_score Specificity 
Area Under 

Curve (AUC) 

Random Forest(Bagging) 0.760 0.765 0.766 0.737 0.958 0.989 

Sel-Attention MLP 0.810 0.810 0.884 0.824 0.966 0.994 

XGBoost 0.770 0.741 0.804 0.712 0.960 0.976 

ExtraTree 0.650 0.591 0.620 0.625 0.938 0.905 

LightGBM 0.770 0.741 0.854 0.755 0.959 0.977 

CatBoost 0.680 0.638 0.718 0.687 0.943 0.896 

FIPSO 

KNN 0.750 0.719 0.713 0.696 0.958 0.810 

Decision Tree 0.700 0.554 0.644 0.642 0.948 0.778 

Naive Bayes 0.660 0.568 0.615 0.601 0.941 0.960 

Random Forest(Bagging) 0.750 0.687 0.816 0.697 0.956 0.978 

Sel-Attention MLP 0.670 0.639 0.608 0.610 0.944 0.793 

XGBoost 0.780 0.757 0.735 0.721 0.963 0.952 

ExtraTree 0.620 0.608 0.651 0.580 0.933 0.868 

LightGBM 0.840 0.785 0.817 0.789 0.972 0.974 

CatBoost 0.830 0.778 0.864 0.779 0.971 0.924 

Zebra 

KNN 0.850 0.888 0.895 0.887 0.974 0.870 

Decision Tree 0.910 0.929 0.900 0.911 0.985 0.929 

Naive Bayes 0.630 0.585 0.774 0.690 0.934 1.000 

Random Forest(Bagging) 0.830 0.787 0.846 0.778 0.971 0.991 

Sel-Attention MLP 0.850 0.893 0.887 0.888 0.974 0.987 

XGBoost 0.870 0.848 0.831 0.827 0.978 0.991 

ExtraTree 0.640 0.624 0.613 0.590 0.937 0.898 

LightGBM 0.850 0.784 0.796 0.774 0.974 0.987 

CatBoost 0.860 0.797 0.885 0.816 0.976 0.976 

WOA 

KNN 0.880 0.827 0.904 0.838 0.978 0.906 

Decision Tree 0.910 0.812 0.922 0.931 0.985 0.981 

Naive Bayes 0.730 0.629 0.814 0.731 0.952 0.988 

Random Forest(Bagging) 0.900 0.837 0.932 0.857 0.982 0.999 

Sel-Attention MLP 0.900 0.835 0.871 0.847 0.982 0.997 

XGBoost 0.940 0.873 0.961 0.892 0.989 0.991 

ExtraTree 0.670 0.644 0.620 0.604 0.942 0.904 

LightGBM 0.890 0.827 0.927 0.848 0.980 0.982 

CatBoost 0.930 0.862 0.921 0.866 0.988 0.986 

HO 

KNN 0.920 0.849 0.950 0.873 0.985 0.894 

Decision Tree 0.900 0.804 0.938 0.933 0.981 0.861 

Naive Bayes 0.730 0.648 0.802 0.840 0.952 0.926 

Random Forest(Bagging) 0.840 0.780 0.889 0.784 0.971 0.978 

Sel-Attention MLP 0.910 0.847 0.873 0.855 0.984 0.991 

XGBoost 0.830 0.777 0.819 0.779 0.969 0.986 

ExtraTree 0.690 0.623 0.580 0.671 0.946 0.910 

LightGBM 0.910 0.875 0.863 0.855 0.985 0.992 

CatBoost 0.870 0.810 0.807 0.804 0.978 0.972 

CPO 

KNN 0.960 0.972 0.969 0.970 0.993 0.971 

Decision Tree 0.950 0.958 0.966 0.960 0.991 0.971 

Naive Bayes 0.800 0.702 0.854 0.800 0.964 1.000 

Random Forest(Bagging) 0.930 0.936 0.955 0.938 0.988 1.000 

Sel-Attention MLP 0.920 0.936 0.948 0.938 0.986 0.999 
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Feature 

selction 

methods 

Algorithm Accuracy Recall Precision F1_score Specificity 
Area Under 

Curve (AUC) 

XGBoost 0.920 0.892 0.951 0.910 0.986 0.995 

ExtraTree 0.670 0.604 0.558 0.646 0.942 0.911 

LightGBM 0.930 0.860 0.948 0.878 0.988 0.996 

CatBoost 0.840 0.703 0.795 0.715 0.972 0.977 

 
The results presented in Table 3 indicate that the ReliefF-QANA method a feature selection algorithm 

combining ReliefF with the QANA optimization algorithm - achieved the highest or near-highest accuracy 
across most models. For instance, the accuracy of the KNN model with this method reached 0.94, while the 
Sel-Attention MLP model attained 0.97. Additionally, when combined with XGBoost, an accuracy of 0.97 
was achieved, representing the highest accuracy among all tested combinations. These findings demonstrate 
the strong capability of QANA in selecting effective features, as it significantly enhanced the performance of 
various models at different levels. This improvement likely stems from QANA’s efficient search of the 
feature space and its ability to eliminate redundant and less informative features, thereby enabling models 
to train on richer, noise-free information. The QANA algorithm leverages both long-term and short-term 
memory to provide meaningful knowledge during partial analysis of the search space. And employs a 
quantum crossover operator to generate subsequent generations of search agents–three factors that 
distinguish it from other methods. It is also noteworthy that QANA incorporates a population division 
mechanism, which further contributes to achieving superior results. 

In contrast, the ReliefF-FIPSO and ReliefF-SBOA methods generally yielded inferior results. Specifically, 
ReliefF-FIPSO recorded the lowest accuracies in most models, notably achieving only 0.66 in the Naive Bayes 
classifier, 0.70 in the decision tree, and 0.67 in the MLP model. Similarly, ReliefF-SBOA exhibited poor 
performance in models such as KNN with an accuracy of 0.81, random forest with 0.76, and CatBoost with 
0.68. This subpar performance can be attributed to the inefficiency of the FIPSO and SBOA algorithms in 
selecting an optimal subset of features from complex 3D ultrasound images characterized by significant class 
overlap. These algorithms suffered from premature convergence or became trapped in local optima during 
the optimization process, resulting in the selection of less informative or redundant features and 
consequently reduced classifier accuracy. 

Conversely, the ReliefF-CPO method demonstrated highly favorable outcomes, particularly in models 
such as KNN with 0.96 accuracy, decision tree with 0.95, and XGBoost with 0.92, highlighting the algorithm’s 
capability to maintain a balanced exploration and exploitation of the feature space. By leveraging chaotic 
dynamics and adaptive search mechanisms, this algorithm effectively identifies impactful features. This 
performance disparity underscores the critical importance of selecting an appropriate metaheuristic 
algorithm in conjunction with filter-based methods like ReliefF to enhance machine learning model efficacy. 
Table 4 presents the findings of an ANOVA test on the accuracy values of nine machine learning methods 
across ten different feature selection groups, with a significance level (alpha, 𝛼) set at 0.05. 

In addition to the numerical improvements reported, there are additional critical insights from the 
findings. First, the consideration of both textural and deep features appears to be an important contributor 
for the enhancement of classification accuracy. The textural features, although not considered in previous 
studies using CNNs, added value by providing important tumor-specific details that were lost in the deeper 
layers of the neural networks. Second, the feature selection technique of hierarchical feature selection—
specifically ReliefF in combination with sophisticated metaheuristic was highly effective in eliminating 
redundant features and enhancing the most relevant features in the ultrasound images. Of these, QANA was 
the most distinctive, because of its balance of exploration and exploitation, population diversity and its 
ability to avoid premature convergence led to richer feature subsets that were provided to the classifiers. 

In the same manner, the comparison across classifiers showed that no single algorithm excelled under all 
conditions, and instead, peak performance was achieved by the combination of robust feature subsets with 
specific classifiers KNN, XGBoost, or Self-Attention MLP. This indicates that the effectiveness of a diagnostic 
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system is determined not solely by the choice of model, but by the interplay between the features and the 
model’s capacity to learn through the features provided. 

Taken together, these results demonstrate that the superior performance observed in this study stems 
from three intertwined factors: (1) the inclusion of texture-aware descriptors, (2) the adoption of a two-level 
feature selection pipeline, and (3) the careful pairing of optimized feature sets with classifiers well-suited to 
ultrasound image characteristics. These insights provide a foundation for developing more reliable CAD 
(computer-aided diagnosis) systems for ovarian cancer detection in real-world clinical settings. 

Table 4. Findings of the ANOVA test on the accuracy of feature selection methods in the OTU_CEUS 

Dataset. 

ANOVA: Single Factor (Accuracy) 

Summary 

Groups Count Sum Average Variance   

ReliefF-

MPA 
9 7.52 0.835556 0.007128   

ReliefF-

IGWO 
9 7.65 0.85 0.0084   

ReliefF-

WHO 
9 7.65 0.85 0.006725   

ReliefF-

QANA 
9 8.14 0.904444 0.007978   

ReliefF-

SBOA 
9 6.74 0.748889 0.003586   

ReliefF-

FIPSO 
9 6.6 0.733333 0.00585   

ReliefF-

Zebra 
9 7.29 0.81 0.010325   

ReliefF-

WOA 
9 7.75 0.861111 0.008911   

ReliefF-HO 9 7.6 0.844444 0.006903   

ReliefF-

CPO 
9 7.92 0.88 0.00895   

ANOVA 

Source of 

Variation 

Sum of  

Square

s (SS) 

Degree

s of 

Freedo

m (DF) 

Mean  

Square 

(MS) 

F-Ratio 
Probability  

Value P-value 
F crit 

Between 

Groups 

0.23707

1 
9 0.026341 3.523649 0.001016 1.999115 

Within 

Groups 

0.59804

4 
80 0.007476    

Total 
0.83511

6 
89     

 
The results of the ANOVA test conducted on the accuracy of 10 hierarchical hybrid feature selection 

methods demonstrate statistically significant differences in their performance. Based on the statistical 
analyses, the ReliefF-QANA method, with a mean accuracy of 0.904 and a variance of 0.007978, was 
identified as the best-performing approach. This superiority is primarily attributed to the inherent nature of 
the QANA algorithm, which leverages quantum mechanisms to avoid entrapment in local optima. 
Additionally, this algorithm utilizes both long-term and short-term memory to provide meaningful 
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knowledge during partial search space analysis, alongside a quantum crossover operator to generate the next 
generation of search agents. Such features confer considerable advantages, especially when processing 
complex, high-dimensional ultrasound imaging data. 

Conversely, the ReliefF-FIPSO method exhibited the weakest performance, with a mean accuracy of 0.733. 
This deficiency can be ascribed to the intrinsic challenges faced by particle swarm optimization-based 
algorithms in navigating high-dimensional search spaces, where premature convergence often occurs, 
resulting in the selection of suboptimal feature subsets. The ANOVA results, with an F-value of 3.52 
exceeding the critical F-value of 1.99, clearly indicate significant differences among the methods. This finding 
is further confirmed by a very low p-value (0.001016), affirming that the observed differences are not random 
but are due to the genuine impact of the feature selection algorithms. 

Variance analysis among the methods also provides valuable insights. For instance, ReliefF-SBOA 
demonstrated the most stable performance across various classifiers, with a variance of 0.003586. Such 
stability is particularly important for clinical applications requiring high reliability. On the other hand, 
methods like QANA and CPO exhibited excellent adaptability with a wide range of classifiers, including 
KNN, XGBoost, and self-attention neural networks, owing to their high flexibility. 

In summary, the selection of an appropriate feature selection approach in ultrasound image-based 
medical diagnostic systems has a direct effect on the final accuracy of the system. Novel approaches inspired 
by quantum physics concepts and natural behaviors tend to outperform others due to their ability to 
effectively manage the intrinsic complexity of medical data. Table 5 presents the findings of the ANOVA test 
comparing the classification models’ accuracy. The significance level (alpha or 𝛼) was set at 0.05. 

Table 5. ANOVA test findings on the accuracy of various machine learning methods using the OTU_CEUS 

dataset. 

Anova: Single Factor (Accuracy) 

Summary 

Groups Count Sum Average Variance   

KNN 10 8.88 0.888 0.003951   

Decision Tree 10 8.73 0.873 0.006246   

Naive Bayes 10 7.26 0.726 0.003982   

Random 

Forest(Bagging) 
10 8.58 0.858 0.004196   

Sel-Attention 

MLP 
10 8.75 0.875 0.007072   

XGBoost 10 8.66 0.866 0.004293   

ExtraTree 10 6.68 0.668 0.000573   

LightGBM 10 8.85 0.885 0.002761   

CatBoost 10 8.47 0.847 0.004534   

ANOVA 

Source of 

Variation 

Sum of 

 Squares 

(SS) 

Degrees of  

Freedom 

(DF) 

Mean Squares  

(MS) 
F-ratio P-value F crit 

Between Groups 0.496636 8 0.062079 14.85593 3.69E-13 2.054882 

Within Groups 0.33848 81 0.004179    

Total 0.835116 89     

 
The findings of the ANOVA analysis, conducted to compare the accuracy of nine different classification 

models, indicate statistically significant differences in their performance (F (8, 81) = 14.86, p-value = 3.69E-
13). This finding confirms that the selection of classification model has a significant impact on predictive 
accuracy. 
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With a mean accuracy of 0.888 and a variance of 0.003951, the K-Nearest Neighbors (KNN) model and 
LightGBM model performed the best among the models that were evaluated, according to descriptive 
statistics.  These findings imply that within this particular dataset, neighborhood-based models like KNN 
and gradient boosting optimizers like LightGBM show better generalizability. 

With a mean accuracy of 0.668, the ExtraTree model, on the other hand, performed the worst. This is 
because its structure is comparatively simpler than that of other approaches.  According to variance 
comparisons, ExtraTree produced the most consistent results (variance of 0.000573), while the Sel-Attention 
MLP model showed the most instability (variance of 0.007072). 

 The observed differences between models are statistically significant and not the product of chance, as 
this analysis shows. Figures 11 to 14 present the ROC curves and confusion matrices for several of the 
aforementioned models evaluated on the OTU_CEUS ultrasound dataset.  

The findings in Figure 17 indicate that the ReliefF-QANA method significantly outperforms others across 
most models, particularly achieving an accuracy of 0.97 with the Sel-Attention MLP and XGBoost. More 
complex models like LightGBM and Random Forest have higher average accuracies (ranging from 0.89 to 
0.93) than simpler models like Naive Bayes (0.71 to 0.80) and ExtraTree (0.62 to 0.69). These trends suggest 
that the best results are obtained when combining advanced feature selection algorithms like QANA with 
deep learning or ensemble-based models, even though simpler models are usually more affected by the 
limitations of the feature selection algorithms used.  

 

FIGURE 11. Confusion matrix of the CPO-KNN 

model. 
FIGURE 12. Confusion matrix of the QANA-

LightGBM model. 

FIGURE 13. ROC curves of methods with CPO 

feature selection. 

FIGURE 14. ROC curves of methods with QANA 

feature selection. 
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5. COMPARISON OF METHOD RESULTS ON OTU_CEUS DATA 
Table 6 presents a comparison between the top-performing methods from the present study and the 

methods reported in [63]. 

Table 6. Comparison of method performance on OTU_CEUS ultrasound image dataset. 

 Model Accuracy Recall Precision F1score Specificity AUC 

Best Proposed 

Methods in 

Each FS 

 

  

QANA-XGBoost 0.970 0.979 0.977 0.977 0.995 0.997 

CPO-KNN 0.960 0.972 0.969 0.970 0.993 0.971 

WOA-XGBoost 0.940 0.873 0.961 0.892 0.989 0.991 

IGWO-Sel-Attention MLP 0.930 0.919 0.920 0.912 0.988 0.991 

HO-KNN 0.920 0.849 0.950 0.873 0.985 0.894 

WHO-Random Forest(Bagging) 0.910 0.913 0.913 0.896 0.985 0.977 

Zebra-Decision Tree 0.910 0.929 0.900 0.911 0.985 0.929 

MAP-Sel-Attention MLP 0.900 0.923 0.923 0.922 0.982 0.996 

SBOA-Sel-Attention MLP 0.810 0.810 0.884 0.824 0.966 0.994 

FIPSO-KNN 0.750 0.719 0.713 0.696 0.958 0.810 

[63]  

VGG-16 0.740 0.647 0.782 0.834 0.954 0.916 

ResNet-34 0.830 0.769 0.853 0.785 0.970 0.876 

ResNet-50 0.825 0.741 0.721 0.832 0.962 0.982 

DenseNet-121 0.770 0.741 0.804 0.712 0.960 0.976 

MobileNetV2 0.780 0.757 0.735 0.721 0.963 0.952 

EfficientNet-b0 0.900 0.923 0.923 0.922 0.982 0.996 

EfficientNet-b1 0.730 0.629 0.814 0.731 0.952 0.988 

EfficientNetV2-S 0.830 0.787 0.846 0.778 0.971 0.991 

EfficientNetV2-M 0.85 0.89 0.89 0.89 0.97 0.87 

 
In this study, the proposed methods demonstrated superior performance compared to the deep learning 

approaches presented by with an accuracy of 97%, recall of 97.9%, and precision of 97.7%. The QANA-
XGBoost approach notably outperformed the others. This superiority can be ascribed to the best possible 
combination of efficient feature selection and metaheuristic optimization algorithms, which reduced 
dimensionality and improved model efficiency. With accuracies of 74% and 83%, respectively, Zhao's 
methods, such as VGG-16 and ResNet-34, fared worse because of the constraints imposed by the small 
dataset size.  In order to avoid overfitting or failing to recognize intricate patterns, deep neural networks 
usually need a large amount of data to be trained. 

 The use of intelligent hierarchical feature selection algorithms made up of CPO (Penguin Population 
Optimization) and QANA (Quantum-inspired Adaptive Network Algorithm) is a major component 
underpinning the benefits of the suggested methods. These algorithms help the model focus on crucial 
discriminative features by eliminating irrelevant or noisy features. Furthermore, there is a reasonable trade-
off between maintaining computational efficiency and extracting complex features when metaheuristic 
algorithms are combined with traditional machine learning methods like XGBoost and KNN. In contrast, 
Zhao's methods rely primarily on pre-built deep neural network architectures, which are less adaptable to 
small-scale datasets. 

Interestingly, even among Zhao’s approaches, EfficientNet-b0 achieved a competitive performance with 
90% accuracy and an AUC of 99.6%, indicating that efficient architectures like Efficient Net can partly 
mitigate the challenges posed by limited data. However, it still underperformed compared to QANA-
XGBoost in terms of accuracy and other key metrics. In particular, QANA-XGBoost performed about 12% 
better in accuracy and 9% better in recall than Zhao's top model, EfficientNetV2-M (85% accuracy).  This 
notable distinction emphasizes how hybrid approaches based on metaheuristic optimization and machine 
learning can provide better results than pure deep learning models in situations with limited data. 
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The proposed framework for deep learning tumor diagnosis is effective due to its combination of 
handcrafted textural features and deep representations. The hierarchical feature selection mechanism, 
combining ReliefF with advanced metaheuristics like QANA and CPO, filters out noisy variables while 
retaining discriminative descriptors. This process improves classification accuracy and reduces 
computational overhead, making it more practical for clinical deployment. QANA is particularly impactful 
due to its ability to balance exploration and exploitation, maintain population diversity, and prevent 
premature convergence. The framework's most effective components are the hybridization of textural and 
deep features, the two-level feature selection strategy, and the integration of metaheuristic-driven feature 
optimization with flexible machine learning classifiers. 

6. EVALUATION OF DIFFERENT FEATURE SELECTION METHODS ON THE OTU_2D DATASET 
In this section, ten metaheuristic optimization (MO) algorithms were applied to select the most pertinent 

subset of features from extracted ultrasound image features. To select the most effective approach, 
comprehensive evaluations were carried out on the OTU_2d dataset as presented in Table 7. 

Table 7. Evaluation of various feature selection and classification methods on the OTU_2d dataset. 

Feature 

Selection 
Algorithms Accuracy Recall Precision F1_score Specificity AUC 

MPA 

KNN 0.981 0.972 0.984 0.978 0.997 0.991 

Decision Tree 0.998 0.993 0.999 0.996 1.000 1.000 

Naive Bayes 0.968 0.967 0.957 0.961 0.995 1.000 

Random 

Forest(Bagging) 
0.994 0.988 0.994 0.990 0.999 1.000 

Sel-Attention MLP 0.987 0.984 0.988 0.986 0.998 1.000 

XGBoost 0.996 0.990 0.997 0.993 0.999 0.999 

ExtraTree 0.759 0.571 0.820 0.595 0.963 0.978 

LightGBM 0.994 0.988 0.996 0.992 0.999 1.000 

CatBoost 0.996 0.990 0.997 0.993 0.999 1.000 

IGWO 

KNN 0.979 0.975 0.970 0.972 0.997 0.993 

Decision Tree 0.998 0.996 0.998 0.997 1.000 1.000 

Naive Bayes 0.953 0.911 0.908 0.909 0.993 1.000 

Random 

Forest(Bagging) 
0.996 0.998 0.997 0.997 0.999 1.000 

Sel-Attention MLP 0.991 0.987 0.987 0.987 0.999 1.000 

XGBoost 0.996 0.998 0.997 0.997 0.999 1.000 

ExtraTree 0.746 0.565 0.822 0.593 0.961 0.971 

LightGBM 0.994 0.990 0.993 0.991 0.999 1.000 

CatBoost 0.994 0.988 0.996 0.992 0.999 1.000 

WHO 

KNN 0.991 0.991 0.995 0.993 0.999 0.997 

Decision Tree 0.987 0.970 0.987 0.978 0.998 0.993 

Naive Bayes 0.979 0.976 0.987 0.981 0.997 0.996 

Random 

Forest(Bagging) 
0.994 0.986 0.996 0.991 0.999 0.999 

Sel-Attention MLP 0.987 0.980 0.992 0.986 0.998 1.000 

XGBoost 0.996 0.990 0.998 0.994 0.999 1.000 

ExtraTree 0.744 0.549 0.830 0.571 0.960 0.977 

LightGBM 0.996 0.990 0.997 0.994 0.999 1.000 

CatBoost 0.987 0.970 0.988 0.978 0.998 0.999 

QANA 
KNN 0.981 0.981 0.986 0.983 0.997 0.990 

Decision Tree 0.996 0.992 0.997 0.994 0.999 1.000 
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Feature 

Selection 
Algorithms Accuracy Recall Precision F1_score Specificity AUC 

Naive Bayes 0.983 0.984 0.981 0.983 0.997 1.000 

Random 

Forest(Bagging) 
0.996 0.992 0.997 0.994 0.999 1.000 

Sel-Attention MLP 0.991 0.990 0.987 0.988 0.999 1.000 

XGBoost 0.996 0.992 0.997 0.994 0.999 1.000 

ExtraTree 0.776 0.626 0.848 0.670 0.965 0.974 

LightGBM 0.996 0.992 0.997 0.994 0.999 1.000 

CatBoost 0.991 0.985 0.982 0.982 0.999 1.000 

SBOA 

KNN 0.985 0.982 0.987 0.984 0.998 0.994 

Decision Tree 0.996 0.992 0.997 0.995 0.999 1.000 

Naive Bayes 0.981 0.981 0.975 0.977 0.997 1.000 

Random 

Forest(Bagging) 
0.998 0.993 0.999 0.996 1.000 1.000 

Sel-Attention MLP 0.994 0.986 0.993 0.989 0.999 1.000 

XGBoost 0.996 0.992 0.997 0.994 0.999 1.000 

ExtraTree 0.776 0.626 0.848 0.670 0.965 0.974 

LightGBM 0.996 0.992 0.997 0.994 0.999 1.000 

CatBoost 0.991 0.985 0.982 0.982 0.999 1.000 

FI-PSO 

KNN 0.981 0.974 0.964 0.968 0.997 0.991 

Decision Tree 0.998 0.993 0.999 0.996 1.000 1.000 

Naive Bayes 0.996 0.992 0.997 0.994 0.999 1.000 

Random 

Forest(Bagging) 
0.996 0.992 0.997 0.994 0.999 1.000 

Sel-Attention MLP 0.987 0.973 0.979 0.976 0.998 1.000 

XGBoost 0.996 0.992 0.997 0.994 0.999 1.000 

ExtraTree 0.753 0.577 0.839 0.609 0.962 0.976 

LightGBM 0.998 0.993 0.999 0.996 1.000 1.000 

CatBoost 0.998 0.993 0.999 0.996 1.000 1.000 

Zebra 

KNN 0.983 0.983 0.984 0.983 0.997 0.990 

Decision Tree 0.989 0.986 0.991 0.988 0.998 0.994 

Naive Bayes 0.981 0.978 0.978 0.978 0.997 1.000 

Random 

Forest(Bagging) 
0.994 0.993 0.996 0.994 0.999 1.000 

Sel-Attention MLP 0.985 0.983 0.978 0.980 0.998 1.000 

XGBoost 0.991 0.995 0.993 0.994 0.999 1.000 

ExtraTree 0.731 0.550 0.814 0.575 0.958 0.971 

LightGBM 0.994 0.993 0.996 0.994 0.999 1.000 

CatBoost 0.981 0.976 0.973 0.974 0.997 1.000 

WOA 

KNN 0.974 0.977 0.980 0.978 0.996 0.975 

Decision Tree 0.989 0.994 0.994 0.994 0.998 0.998 

Naive Bayes 0.959 0.971 0.971 0.971 0.994 0.985 

Random 

Forest(Bagging) 
0.985 0.986 0.989 0.987 0.998 1.000 

Sel-Attention MLP 0.989 0.993 0.986 0.990 0.998 1.000 

XGBoost 0.985 0.985 0.989 0.987 0.998 1.000 

ExtraTree 0.780 0.589 0.842 0.618 0.966 0.980 

LightGBM 0.994 0.991 0.994 0.992 0.999 1.000 

CatBoost 0.987 0.984 0.977 0.981 0.998 1.000 

https://doi.org/10.48161/qaj.v5n3a2064


 

 

QUBAHAN ACADEMIC JOURNAL 

VOL. 5, NO. 3, September 2025 

https://doi.org/10.48161/qaj.v5n3a2064 

 

 
526 

VOLUME 5, No 3, 2025  

 

Feature 

Selection 
Algorithms Accuracy Recall Precision F1_score Specificity AUC 

HO 

KNN 0.981 0.981 0.978 0.979 0.997 0.986 

Decision Tree 0.994 0.994 0.993 0.994 0.999 0.991 

Naive Bayes 0.957 0.955 0.963 0.958 0.994 0.992 

Random 

Forest(Bagging) 
0.994 0.997 0.991 0.994 0.999 0.996 

Sel-Attention MLP 0.987 0.989 0.987 0.988 0.998 0.999 

XGBoost 0.994 0.997 0.996 0.996 0.999 0.999 

ExtraTree 0.759 0.568 0.828 0.589 0.963 0.982 

LightGBM 0.994 0.993 0.993 0.993 0.999 0.999 

CatBoost 0.991 0.992 0.991 0.992 0.999 0.999 

CPO 

KNN 0.983 0.980 0.983 0.982 0.997 0.994 

Decision Tree 0.998 0.993 0.998 0.996 1.000 1.000 

Naive Bayes 0.964 0.965 0.954 0.959 0.995 1.000 

Random 

Forest(Bagging) 
0.996 0.998 0.997 0.997 0.999 1.000 

Sel-Attention MLP 0.985 0.982 0.986 0.984 0.998 1.000 

XGBoost 0.994 0.990 0.989 0.989 0.999 1.000 

ExtraTree 0.746 0.565 0.822 0.593 0.961 0.971 

LightGBM 0.994 0.990 0.993 0.991 0.999 1.000 

CatBoost 0.994 0.988 0.996 0.992 0.999 1.000 

 
A variety of feature selection techniques, such as MPA, IGWO, WHO, QANA, SBOA, FI-PSO, Zebra, 

WOA, HO, and CPO, were used to extract the most relevant features from the ultrasound images, and these 
were combined with a number of classification algorithms, including KNN, Decision Tree, Naïve Bayes, 
Random Forest (Bagging), Sel-Attention MLP, XGBoost, ExtraTree, LightGBM, and CatBoost. The evaluation 
of various feature selection and classification methods on the OUT_2d dataset shows that both the classifier 
and feature selection technique have a significant impact on performance. 

The results show that ensemble and tree-based approaches consistently outperformed simpler classifiers, 
such as Decision Tree, Random Forest, XGBoost, LightGBM, and CatBoost were able to capture complex, 
nonlinear relationships among the extracted features with accuracy values between 0.996 and 0.998 and 
AUCs of 1.0, as well as precision and recall values that generally hovered around 0.99, with Random Forest 
and the MPA feature selection method producing precision and recall of 0.994 and 0.988, respectively. 

However, other approaches, like ExtraTree, consistently performed worse, with accuracy ranging from 
0.74 to 0.78, probably because of overfitting tendencies; Naïve Bayes, although sometimes achieving 
acceptable accuracy, demonstrated variability across feature sets, highlighting its practical limitations; and 
KNN and Sel-Attention MLP performed moderately, with their accuracy and F1 scores improving when 
paired with more successful feature selection methods, such as IGWO and QANA. Taken together, these 
results suggest that the most effective components of the framework were (1) the hybridization of textural 
and deep features, (2) the two-level feature selection strategy, and (3) the integration of metaheuristic-driven 
feature optimization with flexible machine learning classifiers. These elements worked synergistically to 
enhance performance, providing an alternative pathway to high-accuracy diagnosis in scenarios where large 
annotated datasets for deep learning are not readily available. 

The outcomes of testing different classification models for the diagnosis of ovarian tumors utilizing two-
dimensional ultrasound images show that ensemble and tree-based learning algorithms perform noticeably 
better than alternative strategies. With accuracy ranging from 0.996 to 0.998 and an area under the curve 
(AUC) of 1, decision tree algorithms Random Forest, XGBoost, LightGBM, and CatBoost performed the best 
among them. The ability of these methods to capture nonlinear relationships among ultrasound image 
features is the main reason for their superiority. The best-performing models' precision and recall metrics 
continuously hovered around 0.99, suggesting the ideal ratio of accurately detecting positive cases to 
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reducing false positives. Precision and recall values of 0.994 and 0.988, respectively, were obtained by 
combining the Random Forest model with the MPA feature selection method. This indicates that the features 
extracted from the ultrasound images were of high quality. 

All things considered, these results highlight how feature selection and classifier selection have a 
significant influence on model performance. One particularly successful method for creating AI systems for 
the diagnosis of ovarian tumors from 2D ultrasound images is to combine ensemble learning with decision 
tree-based classifiers.  

Tables 8 and 9 report the results of ANOVA statistical tests from two different perspectives, with a 
significance level (alpha, 𝛼) set at 0.05. The findings of the one-way ANOVA analysis indicate no statistically 
significant difference between the mean accuracies of the different groups (F = 0.015649, p-value = 1). This 
finding suggests that all feature selection methods applied to 2D ultrasound images exhibit comparable 
performance in selecting effective features for ovarian tumor classification. However, in terms of mean 
accuracy, the ReliefF-SBOA method performed slightly better than the others, with a mean accuracy of 
0.968017 and a variance of 0.005210. 

Table 8. Results of ANOVA statistical test on the accuracy of feature selection methods in OTU_2d Data. 

ANOVA: Single Factor (Accuracy) 

Summary 

Groups Count Sum Average Variance   

ReliefF-MPA 9   8.671642 0.963516  0.005969   

ReliefF-IGWO 9   8.646055 0.960673  0.006664   

ReliefF-WHO 9   8.660981 0.962331  0.006724   

ReliefF-QANA 9   8.705757 0.967306  0.005173   

ReliefF-SBOA 9   8.712154 0.968017  0.00521   

ReliefF-FIPSO 9   8.701493 0.966833  0.006484   

ReliefF-Zebra 9   8.628998 0.958778  0.0073   

ReliefF-WOA 9   8.643923 0.960436  0.004665   

ReliefF-HO 9   8.65032 0.961147  0.005881   

ReliefF-CPO 9   8.652452 0.961384  0.006616   

ANOVA 

Source of 

Variation 

Sum of  

Square

s (SS) 

Degrees of  

Freedom 

(df) 

Mean 

Squares  

(MS) 

F-Ratio P-value F crit 

Between 

Groups 

0.00085

5 
9 9.5E-05 0.015649 1 1.999115 

Within Groups 
0.48548

6 
80 0.006069    

Total 
0.48634

1 
89     

Table 9. ANOVA test results on the accuracy of machine learning methods in the OTU_2d Dataset. 

ANOVA: Single Factor (Accuracy) 

Summary 

Groups Count Sum Average Variance   

KNN 10    9.818763    0.981876 1.94E-05   

Decision Tree 10    9.942431    0.994243 1.72E-05   

Naive Bayes 10    9.720682    0.972068 0.000188   

Random 

Forest(Bagging) 
10    9.940299    0.99403  1.19E-05   
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Sel-Attention 

MLP 
10    9.884861    0.988486 8.28E-06   

XGBoost 10    9.938166    0.993817 1.16E-05   

ExtraTree 10    7.571429    0.757143 0.000262   

LightGBM 10    9.946695    0.99467 2.27E-06   

CatBoost 10    9.910448    0.991045 2.4E-05   

ANOVA 

Source of 

Variation 

Sum of  

Square 

(SS) 

Degrees of  

Freedom 

(DF) 

Mean Squares  

(MS) 
F-Ratio P-value F crit 

Between Groups   0.481434 8    0.060179 993.3325 1.79E-77 2.054882 

Within Groups   0.004907 81    6.06E-05    

Total   0.486341 89     

 
These results imply that the combination of texture and deep features in ultrasound images can achieve 

high diagnostic accuracy for ovarian tumors regardless of the specific feature selection method used. This 
outcome likely stems from the richness of the extracted features, which leads different feature selection 
algorithms to yield similar results. Furthermore, the low variance values across all groups (ranging from 
0.004665 to 0.007300) indicate consistent and stable performance of the methods in selecting effective 
features. The results of the above analysis indicate highly significant statistical differences among the various 
groups (F = 993.3325, p-value = 1.79E-77). This result unequivocally shows that, in the two-dimensional 
ultrasound dataset used in this study, the accuracy of ovarian tumor diagnosis is significantly impacted by 
the machine learning algorithm selection. 

 The LightGBM approach is the best-performing algorithm, according to the results obtained, with a mean 
accuracy of 0.99467 and an exceptionally low variance (2.27E-06). As demonstrated by its low variance, this 
approach not only performs the most consistently out of all the methods that were evaluated, but it also 
attains the highest average accuracy. Outstanding performance was also shown by other tree-based and 
ensemble learning algorithms, including Random Forest (0.99403), XGBoost (0.993817), and Decision Tree 
(0.994243). These results confirm the superiority of this family of algorithms in medical diagnostic 
applications, particularly in the focused domain of this research - ovarian tumor type classification. 
Comparison of variance values across groups reveals that more advanced methods, such as LightGBM, 
Random Forest, and XGBoost not only yield higher accuracy but also produce more stable results, with 
variances ranging between 1.16E-05 and 2.27E-06.  

7. COMPARISON OF METHOD RESULTS ON OTU_2D DATA 

In the final set of experiments, Table 10 presents a comparison of the results of each proposed model in 
this study with those reported in previous works, such as [46, 63, 64, 65]. 

The comparative results of different methods on the 2D ultrasound dataset used in this study demonstrate 
that hybrid approaches based on optimization and machine learning significantly outperform models built 
on pretrained architectures. In particular, hybrid algorithms like MPA Decision Tree and IGWO–Decision 
Tree obtained flawless AUC and specificity scores, demonstrating the efficacy of this strategy. However, 
despite their intricate and deep architectures, pretrained models such as VGG-16 and ResNet-34 were unable 
to achieve comparable performance levels. There are a number of important reasons for this deficiency. First 
of all, these models frequently experience overfitting when used on smaller datasets because they are usually 
built to function on large-scale datasets. Second, the lack of targeted optimization mechanisms for selecting 
relevant features has reduced their efficiency. For instance, although MobileNetV2 is lightweight, it 
underperforms due to the loss of critical features in its compression layers. Among the reviewed methods, 
the AResUNet model was introduced by [46]. achieved the highest performance in ovarian tumor 
classification. However, the best-performing proposed methods in this study outperformed AResUNet by 
approximately 2% in accuracy, 1% in precision, and 1% in recall. A closer inspection of the results indicates 
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that the success of the proposed methods can be attributed to two key factors: the integration of advanced 
optimization algorithms with machine learning models, and the application of ensemble-based hybrid 
approaches. Algorithms such as MPA and IGWO enhance feature selection by reducing dimensionality and 
improving the efficiency of the base classifiers. In Figures 19 to 22, the confusion matrices and ROC curves 
of the proposed ensemble learning methods are presented. 

Table 10. Comparison of method results on the OTU_2d ultrasound image dataset. 

 Model Accuracy Recall Precision F1score Specificity AUC 

Best 

Proposed 

Methods in 

Each FS   

MPA-Decision 

Tree 
0.998 0.993 0.999 0.996 1.000 1.000 

IGWO- Decision 

Tree 
0.998 0.996 0.998 0.997 1.000 1.000 

WHO-XGBoost 0.996 0.990 0.998 0.994 0.999 1.000 

QANA-XGBoost 0.996 0.992 0.997 0.994 0.999 1.000 

SBOA-Random 

Forest (Bagging) 
0.998 0.993 0.999 0.996 1.000 1.000 

FIPSO-LightGBM 0.998 0.993 0.999 0.996 1.000 1.000 

ZOA-LightGBM 0.994 0.993 0.996 0.994 0.999 1.000 

WOA-LightGBM 0.994 0.991 0.994 0.992 0.999 1.000 

HO-Decision 

Tree 
0.994 0.994 0.993 0.994 0.999 0.991 

CPO-Decision 

Tree 
0.998 0.993 0.998 0.996 1.000 1.000 

[63] 

VGG-16 0.779 0.726 0.848 0.782 0.965 0.974 

ResNet-34 0.889 0.834 0.851 0.842 0.981 0.979 

ResNet-50 0.951 0.952 0.951 0.952 0.959 0.993 

DenseNet-121 0.899 0.894 0.893 0.893 0.965 0.981 

MobileNetV2 0.876 0.889 0.871 0.880 0.943 0.974 

EfficientNet-b0 0.859 0.848 0.859 0.853465 0.911 0.974 

[46] AResUNet 0.976 0.985 0.986 0.985 - - 

[64] Sq-SSD-Lite 0.924 0.784 0.852 - - - 

[65] 

Modified 

LinkNet+DenseN

et 

0.965 - - - - - 

FIGURE 15. Confusion matrix of QANA-XGBoost 

on the OUT_2d dataset. 

FIGURE 16. Confusion matrix of QANA-LGBM 

on the OUT_2d dataset. 
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FIGURE 17. Confusion matrix of ReliefF-QANA on 

the OUT_2d dataset. 

 

FIGURE 18. Confusion matrix of ReliefF-MPA on 

the OUT_2d dataset. 

8. MODEL INTERPRETABILITY WITH AI EXPLAIN 
Figures 19 and 20 present the interpretability of the models developed in this study using the SHAP 

method.  Based on the mean absolute SHAP values, Figures 17 and 18 show how important each predictor 
variable is overall in the decision tree model. The results of this analysis indicate that variable x4 in 2D 
ultrasound images has the highest contribution to model prediction, with a mean absolute Shapley value of 
approximately 0.5. According to this research, x4 is the most important characteristic in ovarian tumor 
differentiation. With respective values of roughly 0.4 and 0.35, the next most significant variables are x1 and 
x2, suggesting that these three attributes collectively form the core of the model's decision-making process. 
The significant difference between the top variables and the others, especially x14, which has the lowest 
importance, indicates that the model is highly dependent on a specific subset of features. This observation 
holds importance from both clinical and model optimization perspectives. Clinically, the highly important 
variables can serve as potential key features for targeted diagnosis. From the standpoint of model 
optimization, it suggests that the model can be simplified by removing less influential variables like x14 
without a significant drop in accuracy. Figures 27 and 28 also present the feature importance plots for the 
Random Forest and KNN models. 

FIGURE 19. Feature importance plot in the 

performance of the decision tree on 3D ultrasound 

images. 

FIGURE 20. Feature importance plot in the 

performance of the decision tree on 2D ultrasound 

images. 

9. DISCUSSION 

Comparing the evaluation of the proposed model to recent studies from 2022–2025, significant findings 
were found. In the 2D dataset (OUT_2D), ensemble-based traditional machine learning methods like MPA-
Decision Tree, IGWO-Decision Tree, SBOA-Random Forest, and FIPSO-LightGBM performed exceptionally 
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well, with accuracies of 0.998 and AUC of 1.000, outperforming several deep learning architectures like VGG-
16 (0.779), ResNet-50 (0.951), and AResUNet (0.976) [46, 63, 64, 65]. Similarly, in the CEUS dataset 
(OUT_CEUS), the proposed methods, particularly QANA-XGBoost and CPO-KNN, achieved high 
accuracies (0.970 and 0.960) and F1-scores (0.977 and 0.970), outperforming recent CNN models like 
EfficientNet-b0 (0.900) and ResNet-50 (0.825) [63; 64]. Although deep learning is becoming more and more 
popular in medical image analysis, these results show that intelligently combining feature selection with 
ensemble classifiers is still very effective for ovarian tumor detection. The comparison with recent 
publications shows that the suggested approach not only achieves competitive or superior performance but 
also maintains robustness across various ultrasound modalities. Overall, the results emphasize the 
significance of hybrid strategies that integrate advanced feature selection and classification techniques, 
highlighting their potential to improve diagnostic accuracy in real-world clinical applications. Beyond 
conventional performance metrics, the use of ANOVA provided interpretive depth by quantifying whether 
the differences in accuracy and other metrics across feature selection–classifier combinations were 
statistically meaningful. This enhances the robustness of the reported findings. 

Given these promising results, it is crucial to provide practical guidance for implementing the proposed 
framework in real-world clinical settings. The proposed framework can be implemented in other clinical 
settings to facilitate replication as follows. First, high-quality ultrasound images should be collected and 
preprocessed, ensuring consistency and proper handling of missing values. Second, both textural and deep 
features should be extracted to preserve discriminative information while minimizing noise, followed by 
hierarchical feature selection using techniques such as ReliefF combined with QANA or CPO. Third, robust 
classifiers, including XGBoost and KNN, should be trained with optimized hyperparameters. Model 
performance should then be evaluated using standard metrics, including Accuracy, Recall, Precision, F1-
score, and AUC, complemented by statistical analyses such as ANOVA. Finally, the trained model should 
be integrated with existing clinical imaging systems, continuously monitored for performance, and deployed 
in compliance with ethical and privacy standards. 

10. LIMITATIONS 
The use of publicly available ultrasound datasets, which might not precisely reflect the ranges of ovarian 

tumors in clinical practice, is one of the study's limitations. Another is that the findings might not apply to 
other imaging environments or hospitals.  Ultrasound image quality and preprocessing methods may affect 
the model's performance, and observer bias may make practical application challenging. Prospective clinical 
validation and multi-center datasets should be used in future research. 

VI. CONCLUSION 
This study developed and evaluated hybrid models based on optimization and machine learning for the 

classification of ovarian tumor types using both 2D and 3D ultrasound images. Unlike previous studies, the 
approach employed ten categories of features, including six texture-based and four deep features. To optimize 
feature selection and reduce model complexity, a hierarchical feature selection method was introduced, 
consisting of the ReliefF filter algorithm at the first stage and ten metaheuristic algorithms at the second level. 
Tumor classification was performed using nine machine learning and neural network methods The findings 
demonstrated that intelligent feature selection combined with ensemble classification algorithms significantly 
enhances diagnostic accuracy. Notably, ReliefF-QANA with KNN and LightGBM produced better results on 
3D data, while the LightGBM algorithm performed best on 2D data. Additionally, pre-trained models were 
unable to compete with the suggested approaches, highlighting the importance of selecting the right algorithm 
and optimizing feature selection. In such situations where there is a shortage of training data, future research 
could investigate combining the suggested model with generative networks like GANs to produce high-quality 
synthetic samples. This would improve the accuracy of the local method and eventually the network as a whole. 
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