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Abstract— In this research we discuss to Ordinary Least 

Squares and Generalized Least Squares techniques and 

estimate with First Order Autoregressive scheme from 

different correlation levels by using simple linear regression 

model. A comparison has been made between these two 

methods on the basis of variances results. For the purpose of 

comparison, we use simulation of Monte Carlo study and the 

experiment is repeated 5000 times. We use sample sizes 50, 100, 

200, 300 and 500, and observe the influence of different sample 

sizes on the estimators. 

By comparing variances of OLS and GLS at different 

values of sample sizes and correlation levels with σ=1,3, we 

found that variance of (β_0) at sample size 500, OLS and GLS 

gives similar results but at sample size 50 variance of GLS 

(β_0) has minimum values as compared to OLS. So, it is clear 

that variance of GLS (β_0) is best. Similarly, variance of (β_1) 

from OLS and GLS at sample size 500 and correlation -0.05 

with σ=1, GLS give minimum value as compared to all other 

sample sizes and correlations.  

By comparing overall results of Ordinary Least Squares 

(OLS) and Generalized Least Squares (GLS), we conclude that 

in large samples both are gives similar results but small 

samples GLS is best fitted as compared to OLS. 

Keywords— Linear Regression, Comparison, OLS, GLS, 

Autoregressive Scheme 

I. INTRODUCTION 

In regression modeling, first-order auto correlated errors 
are often a problem. When the data also suffers from 
independent variables, generalized least squares estimation is 
no longer the best alternative to ordinary least squares. The 
Monte Carlo simulation illustrates that regression estimation 

using data transformed according to the generalized least 
squares method provides estimates of the regression 
coefficients which are superior to generalized least squares 
and ordinary least squares estimates. 

While trying to beat the shortcomings of conventional 
least squares assessment strategy within the sight of 
autocorrelation, this investigation looks to apply the summed 
up least squares assessment technique since the least squares 
assessment technique doesn't utilize the data of the 
unexplained change as caught by the mistake terms in the 
needy variable, though the Generalized Least Squares (GLS) 
takes such data, the unexplained difference into account 
unequivocally and is refined. 

First order autocorrelation refers to a one period lag 
relationship between the consecutive errors in a time series 
regression model. This violation of assumption that the errors 
are uncorrelated an in this situation, the best linear unbiased 
estimator (BLUE) of the regression equation is the 
generalized least squares (GLS) estimator. Auto correlated 
errors occur most frequently in econometrics and time series 
modeling because of the trend present in the cumulative 
effects of the omitted variables in the regression setting. The 
regression equations are often used for prediction and 
forecasting (Virgantari, Wijayanti, & Koeshendrajana, 2018).  

Monte Carlo simulation depends on the cycle of 
unequivocally speaking to vulnerabilities by indicating 
contributions as likelihood conveyances. On the off chance 
that the data sources portraying a framework are 
questionable, the forecast of future execution is essentially 
dubious. Monte Carlo reproduction methods have been 
utilized to create information undefined from information 
gathered from genuine marvels that clung to the details of 
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our model. Monte Carlo methods are along these lines 
exceptionally fit to experimentally contemplating the 
properties of hypothetical models and this is the means by 
which they're regularly utilized (Kassab & Awjar, 2020). 

II. OBJECTIVE OF THE STUDY 

The main objectives are: 

• To estimate the parameters using Monte Carlo 
Simulations with different samples.  

• To compare the variances OLS and GLS estimators in 
linear regression model with First Order Auto-
Regressive scheme. 

III. LITERATURE REVIEW 

Safi & Saif (2014) dissected a significant measurable 
issue concerning determining in relapse models in time 
arrangement measures. It is notable that the most acclaimed 
strategy for assessing and anticipating is the Ordinary Least 
Squares (OLS). OLS might be not the ideal in this specific 
circumstance. So throughout the long term many specific 
assessment strategies have been created, for instance 
Generalized Least Squares (GLS). We are contrasting the 
anticipating dependent on certain assessors with the forecast 
utilizing the GLS gauge. This correlation will be utilized by 
what is known as proportions of figure exactness. We lead a 
broad PC reproduction time arrangement information, to 
make correlation among these techniques.   

Akpan & Moffat (2018) dissected the summed up least 
squares to conquer the shortcomings of common least 
squares to guarantee the productivity of the model 
boundaries, fair standard mistakes, substantial t insights and 
p-values, and to represent the presence of autocorrelation. 
Notwithstanding, the conclusion of the fitted relapse model 
utilizing Breusch and Godfrey test, ACF, and PACF 
indicated that the residuals are related, henceforth the 
requirement for summed up least squares. Further 
discoveries from the aftereffects of summed up least squares 
assessment uncovered that their appraisals are better and that 
the extra data in the blunder terms (autocorrelation) could be 
clarified and caught by AR (2). Subsequently, it very well 
may be derived that summed up least squares gives preferred 
appraisals over the normal least settles and furthermore 
outstanding balances for autocorrelation in time arrangement 
relapse examination.   

Virgantari, Wijayanti, & Koeshendrajana (2018) talked 
about Ordinary Least Squares (OLS) strategy is the most 
well known and generally method used to assess 
mathematical estimations of boundaries of chose relapse 
models. This was because of its fair-mindedness property. 
Nonetheless, when components of ward variable have 
inconsistent differences and additionally related one another, 
there is no assurance that the OLS assessor will show the 
most proficient inside the class of straight fair-minded 
assessors. For conditions commonly experienced, GLS 
technique is proposed an assessment system which yields 
coefficient assessors in any event asymptotically more 
proficient than single condition OLS assessor. This technique 
is inferred by (Aitken, 1935) and it's named Aitken GLS. 
This exploration revealed an investigation of utilization of 
Aitken GLS strategy for assessing boundary of interest 
capacity of creature protein in Indonesia of which has a 

framework condition. This arrangement of condition causes 
infringement of the presumptions of homoscedasticity and 
independency of assessed boundaries.   

Wenning & Valenci (2019) talked about the decency of 
fit for an ARMA time arrangement model that a portmanteau 
trial of the residuals is led to evaluate remaining sequential 
relationship of the fitted ARMA model. Of the numerous 
portmanteau tests accessible for this reason, one of the most 
celebrated and generally utilized is a variation of the first 
Box-Pierce test, the Ljung-Box test. Notwithstanding the 
fame of this test, in any case, there are a few other more 
current portmanteau tests accessible to evaluate lingering 
sequential autocorrelation of the fitted ARMA model. This 
examination centers around the aftereffects of a force 
investigation contrasting these three distinct tests against 
various attacks of ARMA inferred time arrangement, just as 
the conduct of the three diverse test insights inspected when 
applied to a genuine informational index. We affirm that for 
circumstances where the moving normal part of a fitted 
ARMA model is disparaged or when the example size is 
little.   

Chang & Peloquin (2020) proposed an improved 
calculation. The new calculation includes just two lattice 
factorizations, rather than three, and can be executed by 
hindering procedures. It show that, regarding flop checks, the 
improved calculation costs not as much as Paige's first 
calculation regardless and not as much as his second 
calculation at times. Mathematical tests show that regarding 
reproductions running time, our improved calculation is 
quicker than both of the current calculations when hindering 
procedures are utilized.  

Kassab & Awjar (2020) analyzed correlation between the 
explanatory variables in multiple linear regression raises the 
variances of the least squares estimators. These estimators 
become unstable and may have wrong signs. A Monte Carlo 
method is used to estimate these regression parameters and a 
comparison between the ordinary least squares and the new 
ridge regression parameter methods was made in the sense of 
having smaller mean squares error. Based on simulation 
study, it found that the new ridge regression method where 
the ridge parameter k is a vector performs better than the 
ordinary least squares method.    

Kibria & Lukman (2020) acquainted another one-sided 
assessor with defeat the multicollinearity issue for the 
various straight relapse models and gave the assessment 
method of the biasing boundary. A reproduction study has 
been led to think about the exhibition of the proposed 
assessor and Liu (1993) and edge relapse assessors. 
Reproduction results clearly show that the proposed assessor 
performed in a way that is better than both Liu and edge 
under some condition on the shrinkage boundary. Two 
arrangements of genuine information are examined to 
represent the advantages of utilizing the new assessor with 
regards to a direct relapse model.   

Moon & Gunther (2020) assessed the boundaries of the 
Auto-Regressive (AR) irregular cycle are a difficult that has 
been very much contemplated. In numerous applications, just 
uproarious estimations of AR measure are accessible. The 
impact of the added substance commotion is that the 
framework can be displayed as an AR model with shaded 
clamor, in any event, when the estimation clamor is white, 
where the connection lattice relies upon the AR boundaries. 
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Due to the connection, it is practical to register utilizing 
various stacked perceptions. Playing out a weighted least-
squares assessment of the AR boundaries utilizing a reverse 
covariance weighting can give essentially better boundary 
gauges, with progress expanding with the stack profundity. 
Various methods of assessing the obscure covariance are 
introduced, just as a technique to appraise the changes of the 
AR and perception commotion. The documentation is 
stretched out to Vector Auto-Regressive (VAR) measures. 
Recreation results exhibit execution upgrades in coefficient 
mistake and in range assessment. 

IV. MATERIAL AND METHODS 

A. Monte Carlo Simulation 

The conduct of a framework as it advances over the long 
run is concentrated by building up a reproduction model. 
This model normally appears as a series of expectations 
concerning the activity of the framework. Recreation can 
likewise be utilized to contemplate frameworks in the plan 
stage, before such frameworks are fabricated (Wenning & 
Valenci, 2019). Accordingly, reenactment demonstrating can 
be utilized both as an examination instrument for foreseeing 
the impact of changes to existing frameworks and as a plan 
apparatus to anticipate the exhibition of new frameworks 
under shifting situations. 

This simulation study is performed for different samples. 
For data generation and analysis, R programming and 
Minitab have been used. 

B. Ordinary Least Squares 

In this passage, OLS regression will be examined with 
regards to a bivariate model, that is, a model wherein there is 
just a single autonomous variable (X) anticipating a needy 
variable (Y). Not with standing, the rationale of OLS relapse 
is effortlessly stretched out to the multivariate model where 
there are at least two free factors (Safi & White, 2006). The 
simple linear regression model is: 

 

By definition variance 
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C. Generalized Least Squares 

The summed up Generalized Least Squares (GLS) 

assessor of the coefficients of a straight relapse is a 

speculation of the common Ordinary Least Squares (OLS) 

assessor. It is utilized to manage circumstances in which the 

OLS assessor isn't BLUE, since one of the fundamental 

suspicions of the Gauss-Markov hypothesis, specifically that 

of homoscedasticity and nonappearance of sequential 

relationship, is disregarded. In such circumstances, given that 

different suppositions of the Gauss-Markov hypothesis are 

fulfilled, the GLS assessor is BLUE Aitken (1935). The 

simple linear regression model is: 
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D. First Order Auto-Regressive (AR) Scheme 

Model: 

 
The above equation of e_t is known as Markov first order 

autoregressive scheme, usually denoted by AR (1). The 
coefficient ρ is called the first order autocorrelation 
coefficient (also called the coefficient of auto covariance) 
and takes values from -1 to +1. The size of ρ determines 
strength of autocorrelation or serial correlation (Moon & 
Gunther, 2020). That is; 

 

where , and 

 

 

V. RESULT AND DISCUSSION 

A. Monte Carlo Simulation Algorithm 

We used Monte Carlo proposed algorithm to conduct two 
different simulation studies in OLS and GLS estimators in 
linear regression model when the errors are correlated with 
first order autoregressive scheme. In each step, we provide R 
programming that achieve the goals. Our algorithm has four 
main steps as follows:  

1) Model Building 

• Specify the values of model parameters 

• Sample size selection 

• Generation of random error values 

• Generate the values of independent and dependent 
variables 

2) Estimation of Parameters 

3) Replications 

Average values called Monte Carlo Estimates 

4) Evaluation and Presentation of Results 

The Monte Carlo Simulation results are given in Table 1. 

TABLE I.  MONTE CARLO SIMULATION ESTIMATION VARYING SAMPLE SIZES AND CORRELATIONS 

 n=50 n=100 n=200 n=300 n=500 

          

rho=-0.9, var=1 

Var 

OLS 

0.1169 0.3604 0.0539 0.1704 0.0246 0.0710 0.0174 0.0497 0.0105 0.0316 

Var 

GLS 

0.1168 0.3603 0.0539 0.1704 0.0246 0.0710 0.0174 0.0497 0.0105 0.0316 

 rho=-0.5, var=1 

Var 

OLS 

0.0283 0.0785 0.0137 0.0438 0.0063 0.0186 0.0044 0.0133 0.0022 0.0064 

Var 

GLS 

0.0283 0.0785 0.0137 0.0438 0.0063 0.0186 0.0044 0.0133 0.0022 0.0064 

 rho=0.5, var=1 

Var 

OLS 

0.2493 0.2438 0.1118 0.1070 0.0521 0.0466 0.0328 0.0264 0.0187 0.0171 

Var 

GLS 

0.2080 0.1197 0.1108 0.0605 0.0519 0.0265 0.0328 0.0168 0.0186 0.0099 

 rho=0.9, var=1 

Var 

OLS 

112.328 5.2785 26.4752 3.2579 9.4950 1.5402 5.5008 0.8131 6.2541 0.5811 

Var 

GLS 

105.420 0.5324 24.1893 0.3490 9.0764 0.1366 5.3486 0.0853 6.1088 0.0587 

 rho=-0.9, var=3 

Var 

OLS 

0.3293 1.1039 0.1589 0.4966 0.0717 0.1998 0.0516 0.1533 0.0295 0.0839 

Var 

GLS 

0.3293 1.1038 0.1589 0.4965 0.0717 0.1997 0.0516 0.1533 0.0295 0.8394 

 rho=-0.5,  var=3 

Var 

OLS 

0.0841 0.2532 0.0412 0.1140 0.0191 0.0509 0.0127 0.0383 0.0063 0.0198 

Var 

GLS 

0.0841 0.2532 0.0412 0.1140 0.0191 0.0509 0.0127 0.0383 0.0063 0.0198 

 rho=0.5, rar=3 

Var 

OLS 

0.7669 0.4782 0.3286 0.2786 0.1479 0.1668 0.0970 0.0902 0.0601 0.0572 

Var 

GLS 

0.7513 0.2837 0.3249 0.1572 0.1469 0.0921 0.0968 0.0547 0.0600 0.0320 

 rho=0.9, var=3 

Var 282.63 19.206 92.055 9.9035 35.599 3.9800 17.539 2.3885 13.1078 1.6248 
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OLS 

Var 

GLS 

261.49 2.1179 83.730 0.8844 33.826 0.4549 17.036 0.2892 12.8711 0.1809 

 

TABLE II.  〖VAR OLS (Β ̂〗_0) WHEN Σ=1 

 

Sample 

Size 

Rho 

-0.90 -0.50 0.50 0.90 

50 0.1169 0.0283 0.2493 112.3288 

100 0.0539 0.0137 0.1118 26.4752 

200 0.0246 0.0063 0.0521 9.4950 

300 0.0174 0.0044 0.0328 5.5008 

500 0.0105 0.0022 0.0187 6.2541 

 

Fig. 1. 〖Var OLS (β 〗̂_0) when σ=1 

 
 

In Fig. 1 the variance of OLS (β_0), we observe that in 

different sample sizes (50,100,200,300,500) and σ =1 with 

different correlation levels (-0.90,-0.50, 0.50, 0.90). In 

sample size 500 with correlation level -0.50 the variance of 

OLS (β_0) is 0.0022, which is less than all others, and in 

sample size 50 with σ=1 the correlation level 0.90 have 

maximum value of variance OLS (β_0) is 112.3288. 

TABLE III.  〖VAR OLS (Β ̂〗_1) WHEN Σ=1  

 

Sample 

Size 

Rho 

-0.90 -0.50 0.50 0.90 

50 0.3604 0.0785 0.2438 5.2785 

100 0.1704 0.0438 0.1070 3.2579 

200 0.0710 0.0186 0.0466 1.5402 

300 0.0497 0.0497 0.0264 0.8131 

500 0.0316 0.0316 0.0171 0.5811 

Fig. 2. 〖Var OLS (β 〗̂_1) when σ=1  

 

 In Fig. 2 the variance of OLS (β_1), we observe that 

in different sample sizes (50,100,200,300,500) and σ =1 with 

different correlation levels (-0.90,-0.50, 0.50, 0.90). In 

sample size 500 with correlation level 0.50 the variance of 

OLS is 0.0171, which is less than all others, and in sample 

size 50 with σ=1 the correlation level 0.90 have maximum 

value of variance OLS (β_1) is 5.2785. 

TABLE IV.  〖VAR OLS (Β ̂〗_0) WHEN Σ=3  

 

Sample 

Size 

Rho 

-0.90 -0.50 0.50 0.90 

50 0.3293 0.0841 0.7669 282.6318 

100 0.1589 0.0412 0.3286 92.0552 

200 0.0717 0.0191 0.1479 35.5994 

300 0.0516 0.0127 0.0970 17.5397 

500 0.0295 0.0063 0.0601 13.1078 

 

Fig. 3. 〖Var OLS (β 〗̂_0) when σ=3  

 

In Fig. 3 the variance of OLS ( ), we observe that in 

different sample sizes (50,100,200,300,500) and  =3 with 
different correlation levels (-0.90,-0.50, 0.50, 0.90). In 
sample size 500 with correlation level -0.50 the variance of 

OLS ( ) is 0.0063, which is less than all others, and in 

sample size 50 with =3 the correlation level 0.90 have 

maximum value of variance OLS ( ) is 282.6318. 

TABLE V.  〖VAR OLS (Β ̂〗_1) WHEN Σ=3  

 

Sample 

Size 

Rho 

-0.90 -0.50 0.50 0.90 

50 1.1039 0.2532 0.4782 19.2061 

100 0.4966 0.1140 0.2786 9.9035 

200 0.1998 0.0509 0.1668 3.9800 

300 0.0497 0.0383 0.0902 2.3885 

500 0.0839 0.0198 0.0572 1.6248 

Fig. 4. 〖Var OLS (β 〗̂_1) when σ=3 
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 In Fig. 4 the variance of OLS (β_1), we observe that 

in different sample sizes (50,100,200,300,500) and σ =3 with 

different correlation levels (-0.90,-0.50, 0.50, 0.90). In 

sample size 500 with correlation level -0.50 the variance of 

OLS is 0.0198, which is less than all others, and in sample 

size 50 with σ=3 the correlation level 0.90 have maximum 

value of variance OLS (β_1) is 19.2061. 

TABLE VI.  〖VAR GLS (Β ̂〗_0) WHEN Σ=1  

 

Sample 

Size 

Rho 

-0.90 -0.50 0.50 0.90 

50 0.1168 0.0283 0.2080 105.4205 

100 0.0539 0.0137 0.1108 24.1893 

200 0.0246 0.0063 0.0521 9.0764 

300 0.0174 0.0044 0.0328 5.3486 

500 0.0105 0.0022 0.0186 6.1088 

Fig. 5. 〖Var GLS (β 〗̂_0) when σ=1  

 

 In Fig. 5 the variance of GLS (β_0), we observe that 

in different sample sizes (50,100,200,300,500) and σ =1 with 

different correlation levels (-0.90,-0.50, 0.50, 0.90). In 

sample size 500 with correlation level -0.50 the variance of 

GLS (β_0) is 0.0022, which is less than all others, and in 

sample size 50 with σ=1 the correlation level 0.90 have 

maximum value of variance GLS (β_0) is 105.4205. 

TABLE VII.  〖VAR GLS (Β ̂〗_1) WHEN Σ=1  

 

Sample 

Size 

Rho 

-0.90 -0.50 0.50 0.90 

50 0.3604 0.0785 0.1197 0.5324 

100 0.1704 0.0438 0.0605 0.3490 

200 0.0710 0.0186 0.0265 0.1366 

300 0.0497 0.0133 0.0168 0.0853 

500 0.0316 0.0064 0.0099 0.0587 

Fig. 6. 〖Var GLS (β 〗̂_1) when σ=1  

 

 In Fig. 6 the variance of GLS (β_1), we observe that 

in different sample sizes (50,100,200,300,500) and σ =1 with 

different correlation levels (-0.90,-0.50, 0.50, 0.90). In 

sample size 500 with correlation level -0.50 the variance of 

GLS (β_1) is 0.0064, which is less than all others, and in 

sample size 50 with σ=1 the correlation level 0.90 have 

maximum value of variance GLS (β_1) is 0.5324. 

TABLE VIII.  〖VAR GLS (Β ̂〗_0) WHEN Σ=3  

 

Sample 

Size 

Rho 

-0.90 -0.50 0.50 0.90 

50 0.3293 0.0841 0.7513 261.4951 

100 0.1589 0.0412 0.3249 83.7309 

200 0.0717 0.0191 0.1469 33.8265 

300 0.0516 0.0127 0.0968 17.0360 

500 0.0295 0.0063 0.0600 12.8711 

Fig. 7. 〖Var GLS (β 〗̂_0) when σ=3  

 

 In Fig. 7 the variance of GLS (β_0), we observe that 

in different sample sizes (50,100,200,300,500) and σ =3 with 

different correlation levels (-0.90,-0.50, 0.50, 0.90). In 

sample size 500 with correlation level -0.50 the variance of 

GLS (β_0) is 0.0063, which is less than all others, and in 

sample size 50 with σ=3 the correlation level 0.90 have 

maximum value of variance GLS (β_0) is 261.4951. 

TABLE IX.  〖VAR GLS (Β ̂〗_1) WHEN Σ=3  

 

Sample 

Size 

Rho 

-0.90 -0.50 0.50 0.90 

50 1.1038 0.2532 0.2837 2.1179 

100 0.4965 0.1140 0.1572 0.8844 

200 0.1997 0.0509 0.0921 0.4549 

300 0.1533 0.0383 0.0547 0.2892 

500 0.8394 0.0198 0.0320 0.1809 

Fig. 8. 〖Var GLS (β 〗̂_1) when σ=3  

 

 In Fig. 8 the variance of GLS (β_1), we observe that 

in different sample sizes (50,100,200,300,500) and σ =3 with 

different correlation levels (-0.90,-0.50, 0.50, 0.90). In 

sample size 500 with correlation level -0.50 the variance of 

GLS (β_1) is 0.0198, which is less than all others, and in 

sample size 50 with σ=3 the correlation level 0.90 have 

maximum value of variance GLS (β_1) is 2.1179. 
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CONCLUSION 

The average values of parameters of the Ordinary Least 
Squares and Generalized Least Squares estimation with 
different size of sample and correlation levels are estimated. 
When the bias values of Ordinary Least Squares and 
Generalized Least Squares is not normal with haphazard 
manner of average values.  

By comparing variances of OLS and GLS at different 
values of sample sizes and correlation levels with σ=1,3, we 
found that variance of (β_0) at sample size 500, OLS and 
GLS gives similar results but at sample size 50 variance of 
GLS (β_0) has minimum values as compared to OLS. So it is 
clear that variance of GLS (β_0) is best. Similarly variance 
of (β_1) from OLS and GLS at sample size 500 and 
correlation -0.05 with σ=1, GLS give minimum value as 
compared to all other sample sizes and correlations.  

By comparing overall results of Ordinary Least Squares 
(OLS) and Generalized Least Squares (GLS), we conclude 
that in large samples both are gives similar results but small 
samples GLS is best fitted as compared to OLS. 
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