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ABSTRACT: Because of its versatility and ability to work with difficult materials, Electrical Discharge 

Machining (EDM) has become an essential tool in many different industries. It can produce precise 

shapes and intricate details. EDM has transformed fabrication processes in a variety of industries, 

including aerospace and electronics, medical implants and surgical instruments, and the shaping of 

small components. Its capacity to machine undercuts and deep cavities with little material removal 

makes it ideal for producing complex geometries that would be challenging or impossible to 

accomplish with conventional machining techniques. Several attempts have been carried out to solve 

the optimization problem involved in the EDM process. This paper emphasizes optimizing the EDM 

process using three metaheuristic algorithms: Glowworm Swarm Optimization (GSO), Grey Wolf 

Optimizer (GWO), and Whale Optimization Algorithm (WOA). The study's outcome showed that the 

GWO algorithm outperformed the GSO and WOA algorithms in solving the EDM optimization 

problem and achieved the minimum surface roughness value of 1.7593µm. 

Keywords: Electrical Discharge Machining, Surface Roughness, Optimization, Glowworm swarm 

optimization, Grey wolf optimizer, Whale optimization. 

I. INTRODUCTION

A non-traditional machining technique called electrical discharge machining (EDM) uses sparks or
electrical discharges to remove material from a workpiece. In manufacturing, EDM has established itself as 
one of the fundamental non-traditional machining techniques [1, 2]. The term "non-traditional machining" 
refers to the removal of surplus material utilizing a variety of methods, including electrical, chemical, 
thermal, and mechanical energy [3]. Electrically conductive materials with high levels of durability and 
hardness are often machined using the EDM process [1, 4, 5]. Besides, EDM processes are adaptable since 
they may continue to operate independently for extended periods [2, 6]. Many industries use EDM, 
including aerospace, medical, electronics, tool and die manufacturing, and energy. It is a highly effective 
and adaptable machining process necessary for producing a large variety of goods.  

EDM is widely used to machine difficult materials. Electrode machining removes material with an 
electrical charge between electrodes and the workpiece. As a result, EDM presents significant challenges, 
especially obtaining the optimal surface roughness (Ra). Ra measures surface quality as part of machining 
performance measurement. An inadequate Ra can result in poor surface finish, dimension inaccuracies, 
and reduced process efficiency when using non-traditional machining processes [1]. Achieving the optimal 
Ra value can be challenging due to factors such as tool wear, material properties, and machine tool 
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limitations. Additionally, the optimal Ra value may vary depending on the specific requirements of the 
application. This makes it necessary to carefully analyse the trade-off between surface finish and other 
machining performance outcomes. By understanding the relationship between the machining process 
parameters and Ra, manufacturers can optimize their processes and achieve the desired results [4, 5]. Soft 
computing techniques such as fuzzy logic, genetic algorithms, and neural networks were used to overcome 
this challenge. Soft computing allows manufacturers to tackle complex problems related to non-traditional 
machining processes and achieve high-quality surfaces [1, 6]. 

In recent years, several researchers have conducted experiments to improve and comprehend the 
general performance of the machining process using EDM. As a part of soft computing techniques, 
metaheuristic algorithms were implemented to optimize the EDM process to obtain good results. A 
metaheuristic is a significant level structure to create a heuristic optimization algorithm. It may provide an 
adequate solution to an optimization problem because of its efficient searchability [7]. Metaheuristic 
algorithms enable finding good solutions with less computational effort. It is also easy to implement as it 
converges fast. Metaheuristic optimization techniques have been applied to EDM parameters, including 
Glowworm Swarm Optimization (GSO) [1, 8], Grey Wolf Optimizer (GWO) [9, 10], and Whale 
Optimization Algorithm (WOA) [11, 12]. 

The natural Glowworm behavior, in which a Glowworm is lured to other Glowworms that are brighter, 
served as inspiration for the GSO algorithm's working mechanism. Furthermore, GSO was created for 
numerical optimization problems, including calculating several optimal multimodal functions. Zainal et al. 
[8] have proposed a model containing GSO to optimize machining parameters. On the other hand, a study 
by Baisukhan et al. [9] looked at employing GSO to optimize the tungsten inert gas welding process 
parameters for austenitic stainless steel. The purpose of the paper was to present the parameters and rank 
them according to significance within a grey wolf optimization framework. Based on the results, it is 
determined that using austenitic stainless steel, the GSO technique is a solid choice for forecasting the ideal 
parameters of the tungsten arc welding process. 

In 2014, the Grey Wolf Optimizer (GWO) was developed by Mirjalili, and it was inspired by the 
behavior of grey wolves (Canis lupus) [13]. The leadership structure and method of hunting used by grey 
wolves in nature are modeled by the Grey Wolf Optimizer algorithm [14, 10]. Kulkarni et al. [10] have 
presented a paper on process parameter optimization in WEDM by GWO. It studies the effect of process 
parameters where GWO was used to optimize the thinning in automotive sealing cover. It is discovered 
that TON has the greatest influence on MRR, and GWO solved the specified problem where MRR is 
increased by 10% by the GWO. 

Mirjalili and Lewis proposed the Whale Optimization Algorithm (WOA) in 2016 [15]. WOA is an 
optimization algorithm inspired by nature that mimics the social behavior of humpback whales [16]. An 
article on the analysis of Kerf in WEDM using RSM and WOA was written by Subham et al. [11]. The 
experiment indicates that using RSM and WOA, the smallest kerf width was achieved at a high current, 
low wire feed rate, and low flush pressure. Furthermore, die-sinking EDM utilizing FEM and multi-
objective optimization using WOA-CS has been the subject of an experimental and thermal examination by 
Rama et al. [12]. They propose a computational and experimental study of the effects on a Nimonic C-263 
workpiece of a die-sinking EDM and a copper-tungsten (Cu-w) electrode tool. The research output stated 
that the optimal results in terms of relative error. This category of metaheuristic algorithms is used to 
enhance the algorithm's convergence rate and avoid being trapped in local optima. 

II. RELATE WORKS 

 
Recent years have seen researchers employ various metaheuristic algorithms to optimize surface 

roughness in EDM process. In addition, metaheuristic algorithms such as GSO, Genetic Algorithm (GA), 
etc. have shown promising results in minimizing surface roughness and maximizing other process 
characteristics, such as Material Removal Rate (MRR) and Tool Wear Rate (TWR). These studies highlight 
the potential use of metaheuristic algorithms as efficient and reliable tools for the optimization of EDM 
processes. Bhowmick et al, in 2023 applied response surface methodology (RSM) and Fuzzy Logic to 
optimize MRR and Ra of titanium mixed EDM for Inconel 718. In this study, Madani-based fuzzy logic was 
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applied to predict responses in optimized conditions. The RSM desirability function approach was used to 
minimize surface roughness and maximize MRR. ANOVA shows that powder concentration, pulse 
current, gap voltage, and pulse on time affect MRR and surface roughness significantly. Using fuzzy 
results, we found that MRR predicted accurately by 89.21 % and surface roughness predicted by 91.23 %. 
The optimized input parameters are powder concentration = 8 g/l, pulse current = 9.5 A, gap voltage = 60 V, 
pulse on time = 150 μs and pulse off time = 20 μs and the corresponding optimum values of MRR and 
surface roughness are 16.623 mm3/min and 3.71 μm respectively. The SEM result indicates that the width 
of the surface crack is found more in the optimized sample than the sample having the least surface 
roughness. Based on the EDX analysis, a very small amount of copper and titanium particles were included 
on the surface [17]. 

Singh et al., in 2022 presented a study of optimization of EDM parameters using machine learning 
algorithm. In this paper, a Genetic algorithm (GA) and a Teacher Learning-Based Optimization (TLBO) will 
be used to optimize different process inputs in electrical discharge machining of Cu-based shape memory 
alloys. A study was conducted to examine the variation in machining input parameters along with 
response parameters. The process input factors considered were pulse on time (Ton), pulse off time (Toff), 
peak current (Ip), and gap voltage (GV), and their effects on dimension deviation (DD) and tool wear rate 
(TWR). Main runs have been planned using a central composite design matrix. Two-dimensional and 
three-dimensional graphs illustrate the response parameters and machining inputs with Machine Learning 
techniques used for machining Cu-based Shape Memory Alloy (SMA) in EDM operations [18]. 

Sharma and Singh in 2023 used Taguchi approach to optimize EDM input parameters such as peak 
current, pulse on time, pulse off time, and gap voltage. The material removal rate (MRR), tool wear rate 
(TWR) and surface roughness of AA6068 are measured and suitable parameters are discussed. Response 
characteristics are influenced most by peak current. 0.0444 g/min of MRR was found to be optimal at the 
combination of process parameters I = 8 amps current, Vg = 40 V gap voltage, Ton = 100 microseconds, and 
Duty cycle Toff = 80%, the optimal electrode wear or tool wear rate is 0.00044 g/min. However, best surface 
finish (3.617 μm) was found to be optimal I = 4 amps current, Vg = 80 V gap voltage, Ton = 80 microsecond, 
and Duty cycle Toff = 40% [19]. 

Moreover, in a study conducted by Agarwal et al., in 2021, hybrid adaptive neuro-fuzzy inference 
system (ANFIS) and Rao algorithm was implemented in modelling and optimization of surface roughness 
in EDM. In this study, response surface methodology (RSM) has been applied to experimental design and 
data generation. An artificial neural network (ANN) model is developed and optimized for Ra using the 
same data set. ANFIS, an adaptive neurofuzzy inference system (ANFIS), has been developed. Rao 
algorithm and Jaya algorithm have been applied to optimize the developed ANFIS model. The ANFIS 
model outperforms the ANN model on a variety of statistical parameters, including mean square error, 
mean absolute error, root mean square error, mean bias error, and mean absolute percentage error. 
Machined surfaces are significantly improved by both optimization algorithms. Based on the comparison 
of the Rao algorithm with the Jaya algorithm, it was found that the Rao algorithm performed better [20]. 

The modelling and optimization of hot-worked AISI2312 steel alloy was carried out using Particle 
Swarm Optimization (PSO) and Artificial Neural Networks (ANN). A study conducted by Azani 
Moghadda and Kolahan in 2020 considered surface quality, material removed from the workpiece, and tool 
erosion ratio as performance characteristics. Optimizing the process aims to minimize Tool Wear Rate, 
Surface Roughness, and Material Removal Rate simultaneously. A neural network with back propagation 
algorithm (BPNN) was used to examine the relationship between process input parameters and output 
characteristics. For the optimization of multi-response processes, the PSO algorithm was used. A set of 
confirmation tests was conducted to verify the accuracy of the proposed optimization procedure. The 
proposed modeling method (BPNN) can accurately simulate the authentic EDM process with less than 1% 
error, and the optimization technique (PSO algorithm) is quite efficient in process optimization (less than 
4% error) [21]. 

This study utilized the full factorial design of the experiment (DOE) to collect the datasets required for 
the Regression modelling. To simulate the actual process of EDM, a Regression model of Ra was developed 
and tested. As a final step, the Regression model was embedded in a various optimization algorithm such 
as GSO, GWO and WOA which specified the optimal process of EDM input parameters. 
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III. METHODS AND MATERIAL 
The EDM process is a thermoelectric process that is perfect for machining hard and brittle materials that 

are difficult or impossible to machine with conventional methods because it does not require physical 
contact between the electrode and the workpiece. The methodology of optimizing the EDM process using 
three metaheuristic algorithms is presented in Figure 1.  

 

 

FIGURE 1. The experimental steps. 

 

The machine used is a die-sinking electrical discharge machining process type Sodick AG40-L. The 
workpiece material considered is titanium alloy, and copper-tungsten is an electrode tool. It produces 
smooth surface finishes, making it suitable for precision machining applications. It is also known for its 
high reliability and durability, ensuring consistent performance for extended periods of time. The Sodick 
AG40-L machine is also known for its ability to remove material efficiently and precisely. Pulse on time, 
pulse off time, peak current, and servo voltage are selected as EDM parameters, which will affect the 
quality of surface roughness (Ra). The experiments were run according to the full factorial design of the 
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experiment (DOE) with four centered points, which were designed by using Minitab. Four centered points 
indicate the central level of four different EDM parameters. The experimental results were then studied to 
develop the Two Factor Interaction (2FI) Regression model of Ra. The significance of the developed 2FI 
regression model is validated using a confirmation test. Then, an optimization process using GSO, GWO, 
and WOA is performed, considering the 2FI regression model of Ra as their objective function. Optimal 
EDM parameters, minimum Ra values, and convergence rate are observed and compared. 

1. EXPERIMENTAL SETUP OF THE EDM 
The experiments were conducted using a full factorial design technique involving two levels of 

machining parameters, with the addition of four center points. This experiment consisted of a total of 20 
runs, which included 16 regular runs and four center-point runs. With Design Expert 7.0, the parameter 
combinations by fractional were acquired. Figure 1 shows the experimental setup of EDM. The 
arrangement of the experiment's parameters was noted as coded terms: the center point (cp), low level (-), 
and high level (+). 

 

FIGURE 2. Experimental setup of the EDM process [22]. 

 
Because copper-tungsten electrodes have a longer lifespan and a better surface polish than graphite 

electrodes, they are used extensively. The electrode for EDM experiments is made of copper-tungsten alloy 
render, which has certain thermal properties. The copper-tungsten electrodes are cut into small pieces 
using a wire electrical discharge machine (WEDM). The cut electrode with the specification of 20 mm 
length and 8mm diameter is shown in Figure 2. The machining layout of the workpiece, electrodes, and the 
image of the diameter of the holes are shown in Figure 2 and Figure 3, respectively. 

 

 

  

FIGURE 3.  (a) The electrode of the EDM experiment and (b) The machined workpiece of the EDM 

experiment. 
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FIGURE 4. Diameter of twenty holes machined workpiece. 

 
For machining parameters to substantially impact the performance of the EDM, they must be chosen 

properly. The machining parameters that are considered in the EDM experimental are peak current in 
ampere (IP), servo voltage in volt (SV), pulse on time in s (TON), and pulse off time in s (TOFF). Table 1 
shows the list of parameters used for the experiment. 

 

Table 1. Machining parameters of EDM. 

Symbol 
Machining 

Parameter 
Units 

Level 

Low (-) 
Center 

point (cp) 
High (+) 

TON Pulse on time µs 150 190 230 

TOFF Pulse off time µs 60 75 90 

IP Peak current ampere 10 11 12 

SV Servo voltage Volt 30 45 60 

2. THE MODELLING OF THE EDM PROCESS 
Regression analysis examines the input and output control parameters in a functionally related process 

[23]. This approach may be very useful for defining, estimating parameters, and managing data related to 
the manufacturing process. The regression method was implemented for mathematical modeling. For the 
modeling process, the input variable will be the experimental data, while the output data will be the 
regression models.  

Among Regression models, 2FI is a statistical method that uses several independent variables, each with 
two or more levels. Adding interaction terms to a regression model will significantly extend the 
understanding of the relationships among the variables within the model and allows more hypotheses to 
be tested. Therefore, the two-factor interaction model is measured. The regression equation is estimated as 
follows: 
 

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝛽4𝑥4 + 𝛽5𝑥1𝑥2 + 𝛽6𝑥1𝑥3 + 𝛽7𝑥1𝑥4 + 𝛽8𝑥2𝑥3 + 𝛽9𝑥2𝑥4 + 𝛽10𝑥3𝑥4 (1) 

where 𝑦 is the surface roughness in µm, 𝑥𝑛 are the independent variables (pulse on time, pulse off time, 
peak current and servo voltage), and 𝛽𝑛 are regression or coefficients parameters.  

3. THE EDM OPTIMIZATION PARAMETERS  
The process of determining the ideal machining parameters is known as optimization. This program 

was implemented using MATLAB R2022a. EDM performances differ based on parameters such as polarity, 
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no-load voltage, discharge current, plus duration, and electrode materials [24]. Polarity is determined 
based on the arrangement of the electrode or the work materials so that it can obtain the required MRR 
with the lowest TWR [25, 26]. No load voltage, sometimes called an open circuit voltage, exists before the 
current starts to flow. As for voltage, it is chosen by manufacturers [24]. The MRR is directly impacted by 
discharge current since it permits higher erosion rates at lower amperages [24, 25]. Pulse duration is the 
length of time that current goes through a single pulse or discharge. Lastly, electrode materials are the 
elementary thing in the EDM process. When choosing an electrode, one must consider the task's precision, 
the demands of the manufacturing process, and the workpiece's cost and material. Copper and Graphite 
are the two most often utilized types of electrode material [26, 24, 27]. 

The quality of a machined work item is often indicated by surface roughness (Ra). Vibration attached to 
the workpiece in EDM makes surface roughness (SR) to be improved significantly [28, 29]. Besides, the 
machined surface has micro-cracks and pores, which results in the Surface Roughness of that workpiece 
[30, 31]. Ra is measured by calculating the arithmetic mean value as the best estimate of the true value of a 
set of experimental measurements. Ra is also called a center 69-line average or arithmetic average, which is 
obtained by averaging the surface height above and below the center line. 

4. METAHEURISTICS ALGORITHMS 
This section describes the metaheuristics algorithm implemented in optimization of Ra which are GSO, 

GWO, and WOA algorithms. Glowworm swarm optimization (GSO) algorithm is inspired by the social 
behavior of fireflies or Glowworms in nature. This algorithm has three main phases: initialization, 
optimization, and evaluation. In the initialization phase, a set of Glowworms is generated randomly, each 
Glowworm representing a candidate solution [1]. In the optimization phase, the Glowworms move 
according to the attraction-repulsion rules, imitating the behavior of fireflies searching for food. Finally, in 
the evaluation phase, the performance of the optimized solution is evaluated using a specific criterion, and 
the procedure is iterated until a satisfactory solution is found [8, 9]. One advantage of using the GSO 
algorithm over other metaheuristic algorithms is that it requires fewer computational resources and less 
time to find a satisfactory solution [8]. Additionally, the GSO algorithm has demonstrated good 
performance in finding optimal solutions for complex optimization problems, even in high-dimensional 
spaces. Furthermore, the GSO algorithm is simple and easy to understand, making it a popular choice for 
researchers and engineers [1, 8]. 

The Grey Wolf Optimizer (GWO) algorithm is inspired by the hunting behavior of grey wolves in 
nature. It has three main phases: initialization, optimization, and evaluation. In the initialization phase, a 
population of grey wolves is generated randomly, where each grey wolf represents a candidate solution. In 
the optimization phase, the grey wolves move according to the exploration-exploitation rules, imitating the 
behavior of grey wolves searching for prey. Finally, in the evaluation phase, the performance of the 
optimized solution is evaluated using a specific criterion, and the procedure is iterated until a satisfactory 
solution is found. One advantage of using the GWO algorithm for solving complex optimization problems 
is that it requires fewer computational resources and less time to find a satisfactory solution [10, 13]. 
Additionally, the GWO algorithm has demonstrated good performance in finding optimal solutions for 
complex optimization problems, even in high-dimensional spaces [10]. Furthermore, the GWO algorithm is 
simple and easy to understand, making it a popular choice for researchers and engineers. 

The Whale Optimization Algorithm (WOA) is inspired by the feeding behavior of whales. It has three 
main phases: initialization, optimization, and evaluation. In the initialization phase, a population of whales 
is generated randomly, where each whale represents a candidate solution. In the optimization phase, the 
whales move according to the exploration-exploitation rules, imitating the behavior of whales searching for 
food. Finally, in the evaluation phase, the performance of the optimized solution is evaluated using a 
specific criterion, and the procedure is iterated until a satisfactory solution is found [12]. One advantage of 
using the WOA algorithm for solving complex optimization problems is that it requires fewer 
computational resources and less time to find a satisfactory solution [11, 12]. Additionally, the WOA 
algorithm has demonstrated good performance in finding optimal solutions for complex optimization 
problems, even in high-dimensional spaces. Furthermore, the WOA algorithm is simple and easy to 
understand, making it a popular choice for researchers and engineers. In the optimization phase, the 
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exploration-exploitation rules followed by the whales determine the level of risk they take in searching for 
food [11, 15, 16].  

IV. RESULT AND DISCUSSION 
This section analyzes the results obtained based on the experiment on optimizing the EDM process 

using the metaheuristic algorithm. A comparison of different algorithms was measured based on their 
effectiveness in optimizing the EDM process. The following sections show the results of the modeling and 
optimization of the GSO, GWO, and WOA algorithms. 

1. EXPERIMENTAL RESULTS 
Table 2 shows the experimental results for machining performances. According to Table 2, Ra is found 

to be at its lowest at the 11th run (2.2949µm) at the combinations of 150µs of TON, 90µs of TOFF, 10A of IP, 
and 60V of SV. The worst surface roughness was found at 2nd run (3.7860 µm) at the combination of 230µs 
of TON, 60µs of TOFF, 10A of IP, and 30V of SV. 

 

Table 2. Experimental design and results for machining performances. 

Standard  

order 

Machining 

Parameter 

TON (µs) TOFF (µs) IP (A) SV (V) Ra (µm) 

1 150 60 10 30 2.6106 

2 230 60 10 30 3.7860 

3 150 90 10 30 2.6137 

4 230 90 10 30 3.5734 

5 150 60 12 30 3.4860 

6 230 60 12 30 3.4398 

7 150 90 12 30 2.5694 

8 230 90 12 30 2.9312 

9 150 60 10 60 2.4475 

10 230 60 10 60 2.3038 

11 150 90 10 60 2.2949 

12 230 90 10 60 2.4646 

13 150 60 12 60 2.5322 

14 230 60 12 60 2.5121 

15 150 90 12 60 2.5067 

16 230 90 12 60 2.5430 

17 190 75 11 45 2.3455 

18 190 75 11 45 2.6518 

19 190 75 11 45 2.5493 

20 190 75 11 45 2.4989 

2. THE CONFIRMATION TEST 
The confirmation test determines if the optimum machining parameters predicted are within an 

acceptable range of machining parameters. For a variety of combinations of machining parameters, five 
sets of experiments are carried out. To assess the accuracy of the developed model, percentage error and 
average percentage error are included. Therefore, Equation (2) is used to calculate the prediction error. The 
results of the confirmation test of the 2FI model are presented in Table 3.  

 
𝑃𝐸(%) = |𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 − 𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑣𝑎𝑙𝑢𝑒|/(𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑣𝑎𝑙𝑢𝑒) 𝑥 100             (2) 
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Where PE is the prediction error in %, predicted value is the value obtained from mathematical model 
developed and experimental value is the value obtained from experiment.  

 

Table 3. Percentage error for Ra in the 2FI model. 

Machining Parameters Experimental 

value (µm) 

Predicted 

value (µm) 

% Error 

TON 

(µs) 

TOFF 

(µs) 

IP 

(A) 

SV 

(V) 

150 60 10 30 2.6106 2.6712 2.32 

150 90 10 30 2.6137 2.3754 9.12 

230 60 12 30 3.4398 3.1538 8.31 

230 90 12 60 2.5430 1.7956 29.39 

Average percentage error (%) 10.91 

 
According to Table 3, The prediction errors of the 2FI model are 2.32%, 9.12%, 8.31%, 29.39%, and 5.40%. 

Thus, the average prediction error for 2FI is 10.91%. Therefore, the confirmation run shows that the 2FI 
model for every EDM performance gave an average percentage error below 15%, which is a small number 
suitable for prediction. 

3. PERFROMANCE RESULT 
This section discusses the optimization process for surface roughness (Ra). The optimization of the 

EDM process consists of GSO, GWO, and WOA. The optimization using GSO, GWO, and WOA algorithms 
is carried out in MATLAB 2022a. 

 

1.1 Result of the GSO Algorithm. 
The problem for surface roughness (Ra) optimization is described by minimizing Ra as the objective 

function. The objective functions used for the optimization process of Ra are stated in Equation (2). 
 

VPVOFF

POFFVONPONOFFONV

POFFONVPOFFON

SIST

ITSTITTTS

ITTSITTimizeRa

0031.00005.0

0051.00003.00029.0000059.00431.0

8116.00174.00422.01249.5),,,(min

++

−−−+−

+++−=

 (2) 

Where Ra is surface roughness in µm, TON is the pulse on time in µs, TOFF is the pulse of time in µs, IP is 
peak current in ampere, and SV is servo voltage in volt. The optimal optimization solutions for 2FI are 
shown in Table 4. 

 

Table 4. Optimal solutions for GSO. 

Method Optimal Machining Parameters Minimum 

Ra (µs) TON (µs) TOFF (µs) IP (A) SV (V) 

Actual  150 90 10 60 2.2949 

GSO 188 86 10 59 2.0287 

 
According to the result of the GSO optimization, the minimum surface roughness (2.0287μm) using the 

2FI model is given at the optimal combination of machining parameters, TON = 188.6636µs, TOFF = 
86.6291µs, IP = 110.0605A and SV = 59.3569V. Furthermore, Figure 4 shows the convergence rate of GSO 
optimization of Ra in the EDM process. The GSO algorithm reached the optimal solution in more than 20 
iterations. 
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FIGURE 5. Convergence of GSO for Ra. 
 

1.2 Result of the GWO Algorithm. 

The depreciation of Ra is subjected to the boundaries of the cutting parameters in Table 5. Table 5 shows 
the GWO optimization results for the depreciation of Ra with their combination of optimum cutting 
parameters. 

 

Table 5. Optimal solutions for GWO. 

Method Optimal Machining Parameters Minimum 

Ra (µs) TON (µs) TOFF (µs) IP (A) SV (V) 

Actual  150 90 10 60 2.2949 

GWO 230 60 10 60 1.7593 

 
Table 5 shows that the minimum Ra value (1.7593 µs) for the developed Ra model is given by the 

combination of cutting parameters ON = 230µs, OFF = 60µs, IP = 10A, and SV = 60V. GWO optimization 
successfully obtained optimal Ra compared to the experimental result. Figure 5 shows the convergence rate 
of GWO optimization of Ra in the EDM process. Ra model reached the optimal solution in less than ten 
iterations. 

 

 

FIGURE 6. Convergence of GWO for Ra. 
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1.3 Result of the WOA Algorithm. 
Table 6 displays the experiment and WOA optimization result. The WOA optimization result for the 

depreciation of Ra with their combination of optimum cutting parameters is presented in Table 6. 
 

Table 6. Optimal solutions for WOA. 

Method Optimal Machining Parameters Minimum 

Ra (µs) TON (µs) TOFF (µs) IP (A) SV (V) 

Actual  150 90 10 60 2.2949 

WOA 230 90 12 60 1.8016 

 
Table 6 shows that the minimum Ra value is 1.8016 µs. The best solution obtained by WOA by 

combining cutting parameters is ON = 230µs, OFF = 90µs, IP = 12A, and SV = 60V. WOA optimization 
successfully obtained optimal Ra compared to the experimental result. Figure 6 shows the convergence rate 
of WOA optimization of Ra in the EDM process, where it reached the optimal solution in less than ten 
iterations. 
 

 

FIGURE 7. Convergence of WOA for Ra. 

 

1.4 Analysis and Discussion. 
This paper focuses on optimizing the EDM process with three metaheuristic algorithms: WOA, GWO, 

and GSO. In order to create the 2FI regression model of Ra, the experimental results were analyzed further. 
A confirmation test is used to verify the developed 2FI regression model's significance. Subsequently, an 
optimization process with the help of GSO, GWO, and WOA is carried out, with the 2FI regression model 
of Ra serving as the goal function. We observe and compare the minimum Ra values, the convergence rate 
of the EDM parameters, and their optimal values. The performance of GSO, GWO, and WOA algorithms 
was measured based on their effectiveness in optimizing the EDM process. The experimental results show 
that the GSO algorithm estimates a substantially lower value for the minimal surface roughness (Ra), 
which has improved the machining process. Based on the comparative analysis made, it is found that the 
GWO algorithm performed well by achieving a minimum Ra value of 1.7593 when the TON (µs) is 230, 
TOFF (µs) is 60, IP (A) is 10 and SV (V) is 60. The results show that there is the slightest difference in the Ra 
values between all three algorithms. Figure 6 shows the variation in the performance of the optimization 
algorithms. 
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FIGURE 8. The variation in the performance of the optimization algorithms. 

V. CONCLUSION 

This paper proposes optimization techniques for Electrical Discharge Machining (EDM) using 
metaheuristic algorithms. A metaheuristic algorithm is a search method created to locate a definitive 
solution to a complicated and challenging optimization issue. Therefore, metaheuristic algorithms GSO, 
GWO, and WOA optimize the EDM process. Moreover, this experiment was carried out to solve 
optimization problems and compare the effectiveness of metaheuristic algorithms. The experimental 
results showed that these algorithms performed well in their respective ways to optimize the EDM process. 
The GWO outperformed the WOA and the GSO in solving the EDM optimization problems. It gave a 
higher optimum value than other algorithms, which is 1.7593µs. Future work should consider the 
opportunity to improve the performance of the algorithms through a hybrid model that contains GSO and 
GWO. 
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