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ABSTRACT: This study presents a new approach for ozone level detection through feature selection 

by the modified Whale Optimization Algorithm (mWOA). This study aims to enhance the accuracy 

and efficiency of ozone level prediction models by selecting the most informative features from the 

dataset. As air quality deterioration poses significant risks to both human health and ecological 

equilibrium, pinpointing relevant features becomes essential for boosting prediction accuracy. The 

scope of the research includes comparing the performance of mWOA with the original WOA in two 

feature selection techniques: filter-based and wrapper-based. The experiments run proposed 

approaches on a multivariate time-series dataset with 20 repetitions. The evaluation criteria include 

processing time, number of features selected, and classification accuracy obtained by the kNN classifier. 

The statistical results demonstrate the effectiveness of the proposed mWOA approach, outperforming 

WOA due to the modified control parameter that enables a more precise exploration of the search area. 

The findings of this study reveal the improved performance of mWOA in selecting informative 

features, resulting in better prediction on average: 93.75% for filter-based and 94.49% for wrapper-

based. In conclusion, the wrapper-based feature selection using the mWOA approach proves to be a 

valuable asset in enhancing the accuracy and efficiency of ozone level detection models. In the future, 

the proposed technique can be used for more applications in environmental science and engineering 

research. 

Keywords: ozone level detection, whale optimization algorithm, inversed control parameter, feature 

selection, k-nearest neighbours. 

I. INTRODUCTION

The Earth has a complex atmosphere system that plays a crucial role in supporting life on our planet.
Among its many components, ozone (O3) stands out as a critical gas with both beneficial and detrimental 
effects [1]. Ozone is found in different layers of the atmosphere, including the ozone layer in the stratosphere, 
where it acts as a shield against harmful ultraviolet radiation [2]. Under the influence of sunlight, certain 
pollutants, including nitrogen oxides (NOx) and volatile organic compounds (VOCs) undergo chemical 
reactions, forming ground-level ozone [3-5]. This process typically happens in urban areas with high traffic 
and industrial activities [1-5]. Notably, ozone levels in Malaysia are closely linked to transportation-related 
emissions, as vehicular pollutants contribute significantly to the chemical reactions that lead to elevated 
ozone concentrations in the atmosphere [6, 7]. 

At ground level, ozone can become a major air pollutant, posing serious health risks to humans and 
ecosystems [1-8]. Ground-level ozone can also irritate the respiratory system, leading to respiratory health 
problems and exacerbating conditions like asthma and bronchitis. Additionally, it can damage crops and 
forests, contributing to ecological problems [1, 3, 4]. Thus, in the context of ozone level detection, it is essential 
to monitor ground-level ozone concentrations as part of assessing the quality of air and understanding the 
effects of ozone pollution on human health and the environment. By precisely detecting ozone levels, 
researchers can implement measures to mitigate ozone-related air pollution and its adverse effects.  
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Consequently, the accurate detection and monitoring of ozone levels has become a topic of paramount 
importance in environmental research and atmospheric science [1-8]. With the advent of machine learning 
techniques, researchers have gained powerful tools to analyze complex datasets and extract valuable insights 
from environmental data [1, 2, 4, 5, 8, 9]. However, to the best of the authors’ knowledge, the gap relies in 
this research whereby feature selection has yet to be implemented in ozone level detection. Hence, it 
motivates this research to investigate the suitable feature selection method that can produce better 
classification results of ozone level detection. 

Feature selection is a critical step in the machine learning pipeline which aims to identify the most 
relevant and informative features that contribute significantly to the target prediction task [10-12]. By 
eliminating irrelevant or redundant features, feature selection enhances model performance, reduces 
computational costs, and facilitates a deeper understanding of the underlying data [10-12]. Among the 
machine learning algorithms commonly employed in environmental studies, the kNN algorithm has gained 
popularity for its simplicity and effectiveness in classification tasks [11-13]. The kNN algorithm determines 
the class membership of a data point by considering the class labels of its k nearest neighbours [11-13]. 

Meanwhile, the Whale Optimization Algorithm (WOA) is a metaheuristic optimization technique 
inspired by the social behaviour of humpback whales [14]. Originally proposed for solving optimization 
problems, the WOA algorithm has demonstrated its capability to efficiently explore complex search spaces 
and find optimal solutions [15-18]. It draws inspiration from the foraging characteristic of humpback whales 
to solve optimization problems across various domains and is capable to handle various datasets including 
high-dimensional ones [19]. Not only that, a study presented a kNN-wrapped feature selection technique 
employing the WOA for classification purposes using Tournament and Roulette Wheel yielded good results 
while benchmarked against Particle Swarm Optimization (PSO), Ant Lion Optimizer (ALO) and Genetic 
Algorithm (GA) [20]. The outcomes of 98.2% accuracy in the Leukemia dataset highlighted the superiority of 
WOA in enhancing classification accuracy by efficiently identifying optimal feature subsets. In addition, a 
modified WOA (mWOA) was proposed for filter-based feature selection with inversed control parameter 
values [21]. The results of 90.75% average accuracy for the high-dimensional GLI_85 dataset proved that 
mWOA could perform better in terms of high precision rate and lower elapsed time as compared to the 
original WOA. The inversed control parameter technique also inspired another extension of work for 
wrapper-based mWOA and modified Grey Wolf Optimizer as well [22], whereby mWOA continued to show 
its ability in obtaining fewer number of selected features, higher accuracy by kNN, and shorter processing 
time. In conclusion, mWOA has shown its ability to process a variety of datasets, making it a promising 
candidate to detect ozone levels precisely and efficiently. 

Therefore, this study aims to harness the potent capabilities of mWOA with the kNN classifier for refined 
feature selection and enhanced performance in the context of ozone level detection. By comparing the 
classification accuracy results obtained from the ozone level dataset without feature selection (Without FS), 
with features selected by the original WOA, and with features selected by mWOA, the proposed mWOA 
approach has achieved more accurate and efficient ozone level detection. The significance of this research 
resides in its comprehensive exploration and optimization of feature selection methodologies within the 
realm of ozone level detection leveraging mWOA. This study not only expands the horizons of mWOA 
beyond its prior applications in filter-based and wrapper-based feature selection but also establishes its clear 
superiority over the original WOA. Remarkably, the investigation reveals that the wrapper-based mWOA 
surpasses the performance of its filter-based counterpart, demonstrating higher accuracy and more refined 
feature selection. Furthermore, the research presents a nuanced consideration of the trade-off between time 
efficiency and accuracy by comparing filter-based and wrapper-based methodologies. In short, this study 
contributes to the advancement of ozone level detection by introducing and optimizing mWOA-driven 
feature selection methods. 

The paper is organized into five sections: Section 1 provides an overview of ozone level detection and 
discusses previous related research and feature selection. Section 2 presents the related works regarding 
ozone level detection using machine learning approaches. Section 3 outlines the Whale Optimization 
Algorithm (WOA) along with its modified version (mWOA) for feature selection and Experimental Setup. 
Section 4 compares and discusses the experimental results of five techniques: dataset without feature 
selection, filter-based WOA, filter-based mWOA, wrapper-based WOA, and wrapper-based mWOA. Lastly, 
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Section 5 provides the conclusions drawn from the study's outcomes and proposes potential avenues for 
future research. 

II. RELATED WORKS

Based on the literature, a study investigated the prediction of ground-level ozone to mitigate the health
impacts of air pollution [9]. Multiple algorithms, including Support Vector Machines, Extreme Gradient 
Boosting (XGB), K-Nearest Neighbors (kNN), Hist Gradient Boosting Machine, and Deep Neural Networks, 
were employed to differentiate ozone and non-ozone days. It was identified that the XGB algorithm was the 
most suitable, achieving a 95% accuracy in detecting ozone layer concentrations. This work contributed to 
proactive health protection by forecasting ozone levels, endorsing XGB for precise ozone detection, and 
suggesting future exploration of broader datasets and attributes for enhanced applicability. 

Besides, another study aimed to classify ground ozone levels as polluted or non-polluted based on big 
data by using machine learning models [8]. The dataset, sourced from the UCI Website contained 
atmospheric factors for Brazoria areas, underwent preprocessing, standardization, and division into training 
and testing sets. Employing Logistic Regression (LR), Support Vector Machine (SVM), Random Forest (RF), 
Decision Tree (DT), and AdaBoost, the study evaluated model accuracy, with SVM achieving the highest test 
score of 94.9%. The research provided an essential forecasting approach for ground ozone pollution, 
showcasing the effectiveness of SVM among different models. Although challenges like missing values and 
small instances were noted, the study presented insights into model training and the potential utility of 
Neural Network and Deep Learning techniques for future predictions. 

Moreover, a study was carried out focusing on ozone concentration prediction using machine learning 
models, taking into account the adverse effects of elevated ozone pollution on both human health and 
ecological systems [1]. Real data were utilized to assess prediction accuracy. While initial attempts using only 
meteorological variables did not manage to capture ozone trends, incorporating both meteorological and air 
pollutant data as input significantly improved model performance. The study highlighted results with 300% 
and 200% improvement in Root Mean Square Error compared to previous experiments. The best-performing 
model, specifically Support Vector Regression (SVR), demonstrated its effectiveness in ozone prediction, 
potentially benefiting air quality monitoring and management. The research suggested future investigations 
into graph models and complex spatiotemporal data for enhanced ozone prediction. 

Furthermore, another optimization-related research was done by implementing hourly ozone simulation 
[5]. The study aimed to enhance surface ozone modelling in complex terrains, with a focus on Chongqing, a 
city plagued by ozone pollution and cloud cover in China. The proposed approach integrated ground-level 
information using ResNet (Residual Network), addressing challenges like vanishing gradients. A novel data 
structure treated ozone distribution as a non-still image, enhancing model performance. Cross-validation 
showed the robustness and feasibility of the approach, providing encouraging results for similar regions 
with cost-effectiveness and straightforward implementation.  

Similarly, another regional research aimed to model ozone concentration's impact on air quality and 
public health during the winter season in Metropolitan Lima, Peru [2]. Exploratory, correlational, and 
predictive analyses were conducted using data from monitoring stations. LR and SVR were identified as 
effective predictive models. The study highlighted strong positive relationships between temperature and 
ozone, wind speed and ozone. Besides, ozone and relative humidity have a strong negative connection. This 
indicated the influence of anthropogenic activities and meteorological factors on urban air quality. The 
research provided a foundation for interventions in vulnerable areas, offering the potential for future ozone 
modelling applications. While further investigations and data are needed to enhance model accuracy and 
incorporate more variables, the study's findings hold relevance for environmental management and 
decision-making. It suggested avenues for future studies, including evaluating additional contaminants, 
employing varying coefficient models, and analyzing trends in meteorological variables and ozone 
concentration. 

Notably, another work of ozone level prediction was done by researchers using a metaheuristic 
algorithm, Harris Hawk Optimization [4]. The objective of the research was to create a forecast model for 
ozone concentration employing Harris Hawk Optimization with SVR (HHO-SVR). Data from 14 
JABODETABEK including ozone and meteorological factors, were collected. Recursive feature elimination 
with SVR (RFE-SVR) selected predictor variables, while the HHO-SVR model optimized SVR parameters 
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through Harris hawk optimization. Evaluation metrics confirmed the significance of lag variables, humidity, 
ultraviolet index, and air temperature, as predictors. Despite longer optimization times, the HHO-SVR model 
accurately predicted ozone concentration for 7 of 14 sub-districts, notably Ciputat and South Bekasi. The 
study recommended exploring imputation methods, precursor concentration data, and alternative 
metaheuristic algorithms for potential enhancements. 

III. MATERIAL AND METHOD

The methodology section of this study comprises three subsections: (1) Whale Optimization Algorithm
(WOA), (2) Modified Whale Optimization Algorithm for Feature Selection, and (3) Experimental Setup. In 
this section, a detailed overview of the two optimization algorithms, WOA and mWOA is presented. 
Additionally, the experimental setup used to evaluate the performance of WOA and mWOA in selecting 
features for ozone level detection has been described. 

1. WHALE OPTIMIZATION ALGORITHM

The Whale Optimization Algorithm (WOA) was introduced by Mirjalili and Lewis in 2016 [14]. It stands
as a metaheuristic approach inspired by a species called humpback whale, which has been acclaimed for its 
prowess in optimizing diverse domains including engineering, transportation, and medical diagnosis [15-

28]. The algorithm's impressive performance can be attributed to its distinctive search mechanism, 
mimicking the bubble-net hunting behavior [23, 29], as illustrated in Figure 1. 

FIGURE 1. Illustration depicting the bubble-net hunting behavior. 

A. SURROUNDING THE PREY

During this phase, the encirclement of the prey by the whales commences. The present optimal solution
of the prey is assumed to be unknown, hence the best solution is initially considered as the prey's position. 
As the best position becomes evident, the whales progressively move towards this newfound optimum over 
successive iterations. This progression is mathematically captured by Equation (1) and Equation (2), where ' 
𝑡 ' signifies the as-is iteration, '�⃗�' represents the position vector, '𝑋𝑜𝑝

⃗⃗ ⃗⃗ ⃗⃗ ⃗' corresponds to the position vector of the
current best position, while ' | | ' and ' ∙ ' denote the absolute value and dot product operator, respectively. 
With each iteration, the value of '𝑋 ∗⃗⃗⃗⃗⃗⃗⃗' undergoes updates whenever an improved position is discovered. '�⃗⃗⃗�' 
represents the separation of the current position of the whale from the optimal position. The coefficient 
vectors '𝐴' and '𝐶' are formulated in Equation (3) and Equation (4), where '𝑟' signifies a random vector within 
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the range of 0 to 1, and '�⃗�' denotes a control parameter which formulates values from 2 to 0 with equal 
intervals, following Equation (5), with ' 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 ' representing the maximum number of iterations. 

�⃗⃗⃗� = |𝐶 ∙ 𝑋𝑜𝑝
⃗⃗ ⃗⃗ ⃗⃗ ⃗(𝑡) − �⃗�(𝑡)| (1) 

�⃗�(𝑡 + 1) =  𝑋𝑜𝑝
⃗⃗ ⃗⃗ ⃗⃗ ⃗(𝑡) − 𝐴 ∙ �⃗⃗⃗� (2) 

𝐴 = 2�⃗� ∙ 𝑟 − �⃗� (3) 

𝐶 = 2 ∙ 𝑟 (4) 

𝑎 = 2 − 𝑡
2

𝑀𝑎𝑥𝐼𝑡𝑒𝑟
(5) 

B. BUBBLE-NET HUNTING

Bubble-net hunting is also known as the exploitation stage. During this stage, the whales engage in
bubble-net attacks through two distinct maneuvers: the contraction of the encirclement and traversal spirally. 
The former is executed according to Equation (2), while the latter is effectuated utilizing Equation (6). Here, 
' 𝑏 ' serves as a constant that forms the spiral logarithmically whereas ' 𝑙 ' represents a randomly generated 
value within the range of -1 to 1. ' 𝐷′⃗⃗⃗⃗⃗ ' is calculated as ' |𝑋𝑜𝑝

⃗⃗ ⃗⃗ ⃗⃗ ⃗(𝑡) − �⃗�(𝑡)| ', signifying the distance from the ith
whale to the solution. As the whales execute these maneuvers concurrently, the probability ' 𝑝 ' is introduced 
in Equation (7) to determine the chosen maneuver. If ' 𝑝 ' is less than 0.5, the whales contract the circle; else, 
they embark on the spiral-shaped trajectory. 

�⃗�(𝑡 + 1) =  𝐷′⃗⃗⃗⃗⃗ ∙ 𝑒𝑏𝑙 ∙ 𝑐𝑜𝑠(2𝜋𝑙) + 𝑋𝑜𝑝
⃗⃗ ⃗⃗ ⃗⃗ ⃗(𝑡) (6) 

�⃗�(𝑡 + 1) = {
𝑋𝑜𝑝
⃗⃗ ⃗⃗ ⃗⃗ ⃗(𝑡) − 𝐴 ∙ �⃗⃗⃗�  𝑖𝑓 𝑝 < 0.5

𝐷′⃗⃗⃗⃗⃗ ∙ 𝑒𝑏𝑙 ∙ 𝑐𝑜𝑠(2𝜋𝑙) + 𝑋𝑜𝑝
⃗⃗ ⃗⃗ ⃗⃗ ⃗(𝑡)  𝑖𝑓 𝑝 ≥ 0.5

(7) 

C. SEARCHING FOR PREY

Searching for prey is also known as the exploration stage. During this phase, whales engage in a search
for potential positions, guided by randomness concerning their mutual positions. This distinct phase 
diverges from exploitation since a whale's position is transformed by referencing a randomly chosen 
counterpart, rather than relying on the best-found position. This phenomenon is encapsulated within 
Equation (8) and Equation (9), where ' 𝑋𝑟𝑎𝑛𝑑

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ' signifies the position of a randomly picked whale from the
population. 

�⃗⃗⃗� = |𝐶 ∙ 𝑋𝑟𝑎𝑛𝑑
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ − �⃗�| (8) 

�⃗�(𝑡 + 1) =  𝑋𝑟𝑎𝑛𝑑
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ − 𝐴 ∙ �⃗⃗⃗� (9) 

In conclusion, WOA stands as a potent nature-inspired metaheuristic that harnesses the hunting patterns 
of humpback whales. By integrating both exploration and exploitation strategies through position updates 
based on optimal solutions and random selections, WOA emerges as an effective optimization tool applicable 
to diverse problem domains. 

2. MODIFIED WHALE OPTIMIZATION ALGORITHM FOR FEATURE SELECTION

The introduction of the modified control parameter '𝑎' in WOA brings about a notable alteration in the
optimization process. This parameter governs the balance between exploration and exploitation as the 
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algorithm progresses through iterations. By transitioning from the previous formula in Equation (5), to the 
updated form in Equation (10) [21], a more refined control mechanism emerges. 

𝑎 =
2t + 2

𝑀𝑎𝑥𝐼𝑡𝑒𝑟
(10) 

Specifically, this modification enhances how whales explore the search area and adjust their positions. As 
iterations advance, parameter ' 𝑎 ' contributes to a more balanced exploration and exploitation phases. The 
new formula ensures a linear increase in ' 𝑎 ' from 0 to 2, facilitating a change from lesser search space to 
more search space at the beginning of the algorithm [21]. Conversely, at the end of the algorithm, the chance 
of position shifting is changed from high to low. This transition allows more thorough exploration in the 
beginning, followed by a more focused exploitation phase at the end. 

Building upon the precursor work, this paper extends the application of mWOA. In the prior research, 
mWOA was used for filter-based feature selection in high-dimensional cancer datasets [21] and wrapper-
based feature selection in general datasets [22]. This study further explores the utilization of mWOA in ozone 
level detection by comparing both feature selection techniques. This novel extension marks a significant step 
forward, showcasing the versatility and adaptability of mWOA across diverse domains. 

The proposed mWOA is developed for feature selection in both filter-based and wrapper-based 
techniques. In the wrapper-based technique, the fitness value is computed through k-Nearest Neighbors 
(kNN), while the filter-based method derives the fitness value from Equation (11). This equation was adapted 
from another filter-based WOA used in cancerous cell detection [26]. Based on Equation (11), variables ' 𝑥 ' 
and ' 𝑦 ' represent the random samples for Label 0 (Normal) and Label 1 (Ozone), whereas ' 𝑀𝑒𝑎𝑛𝑁𝑜𝑟𝑚𝑎𝑙 ' 
and ' 𝑀𝑒𝑎𝑛𝑂𝑧𝑜𝑛𝑒 ' indicate the average value of the samples for each label. The fitness value symbolized the 
distance between ' 𝑥 ' and ' 𝑦 '. The higher the value generated, the fitter the solution is.  

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = √(𝑥 − 𝑀𝑒𝑎𝑛𝑁𝑜𝑟𝑚𝑎𝑙)2 + (𝑦 − 𝑀𝑒𝑎𝑛𝑂𝑧𝑜𝑛𝑒)2 (11) 

The difference between the proposed filter-based and wrapper-based techniques extends beyond fitness 
value formation; it encompasses the number of selected features as well. In the wrapper-based technique, 
the selection relies on fitness value, with features chosen if their fitness value falls outside a specific threshold, 
which is 0.5 in this case. Conversely, in the filter-based approach, all features are sorted based on the 
generated fitness value, and only the (fitter) upper half is chosen for inclusion. This filter-based approach 
was inspired by a precursor of this work, where eliminating half of the HDD features yields optimal 
classification accuracy [21]. In short, mWOA was implemented in wrapper-based and filter-based techniques 
which highlighted how versatile mWOA is for improving feature selection in different situations. Figure 2 
illustrates the pseudocode detailing mWOA-driven feature selection where 𝑛 denotes number of features, 𝑡 
represents iteration counter, and 𝑚𝑎𝑥𝐼𝑡𝑒𝑟  indicates maximum number of iterations = 100. For the 
experiment, this procedure is applicable to filter-based and wrapper-based feature selection methods. 

Step 1: Initialize the whale population 𝑋𝑖  (𝑖 = 1, 2, … , 𝑛). 

Step 2: Compute each search agent’s fitness: Equation (11) for filter-based; kNN for wrapper-based. 

Step 3: Assign 𝑋𝑜𝑝 = the best search agent 

Step 4: Finding the optimal solution throughout each iteration 

While (𝑡 < 𝑚𝑎𝑥𝐼𝑡𝑒𝑟) 

for each search agent 

Update 𝑎, 𝐴, 𝐶, with Equations (10), (3), (4), set 𝑙 = [−1,1] and 𝑝 =  [0,1] respectively 

if (𝑝 < 0.5) 

if (|𝐴| < 1) 

Update the current search agent’s position by Equation (2) 

else 

Choose a search agent by random (𝑋𝑟𝑎𝑛𝑑) 

Update the current search agent’s position by Equation (9) 

 end if 

else 
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Update the current search agent’s position by Equation (6) 

end if 

end for 

Fix the search agent’s position if it outstrips the search space 

Compute each search agent’s fitness: Equation (11) for filter-based; kNN for wrapper-based. 

Update 𝑋𝑜𝑝 if a fitter solution is found 

𝑡 = 𝑡 + 1 

end while 

Step 5: Feature selection 

For filter-based, select 50% features based on fitness value. 

For wrapper-based, select features with fitness value > 0.5 threshold. 

FIGURE 2. Pseudocode of mWOA-driven feature selection. 

3. EXPERIMENTAL SETUP

The software and hardware configuration for the experiment is as follows.
• Operating System: The experiments were conducted on a computer running Windows 11 version

22H2, a 64-bit operating system.
• Processor: The computer was equipped with an Intel Core i7-10750H CPU with a base clock speed

of 2.60 GHz.
• RAM: A total of 32.0 GB RAM was installed, with 31.8 GB being usable during the experiments.
• GPU: The experimental setup included an NVIDIA GeForce RTX 3060 Laptop GPU for

accelerated computations.
• MATLAB: The experiments utilized MATLAB as the primary programming and analysis

platform. The version employed was MATLAB R2023a.

The Ozone Level Detection dataset is retrieved from the UCI machine learning repository [30]. The 
attributes of the dataset are in numerical values. The dataset has the characteristic of multivariate where it is 
described by more than one feature, some of the features include temperature, humidity, wind direction, 
geopotential height, and sea level pressure. Besides, the dataset has characteristics of time series, where data 
points are sampled eight-hourly in sequential order. The dataset has 2535 observations, 72 features, and a 
binary class whereby Label 0 indicates normal and Label 1 represents harmful ozone. However, only 1847 of 
the observations are without missing values. Therefore, this study performed feature selection and 
classification based on 1847 observations for ozone level detection. 

The experimental procedure involved evaluating the effectiveness of the mWOA for feature selection in 
the context of ozone level detection, comparing it with the original WOA using both filter-based and 
wrapper-based approaches. There were five experiment techniques used as follows. 

• Without FS: The complete dataset was used for classification using the kNN model, without any
feature selection.

• Filter-based WOA: The original WOA was applied with a filter-based approach to select 50% of
the most relevant features based on the fitness value calculated in Equation (11).

• Filter-based mWOA: The proposed mWOA was employed with a filter-based approach to select
50% of the most relevant features based on the fitness value calculated by Equation (11).

• Wrapper-based WOA: The original WOA was applied with a wrapper-based approach, where
the algorithm selected suitable amounts of features based on the fitness value calculated by the
kNN-trained model using different feature subsets.

• Wrapper-based mWOA: The proposed mWOA was employed with a wrapper-based approach,
where the algorithm selected suitable amounts of features based on the fitness value calculated
by the kNN-trained model using different feature subsets.

The K-Nearest Neighbors (kNN) classification model was employed for predicting ozone levels based on 
the selected features. The parameter settings of kNN are as follows: the ‘HoldOut’ validation technique was 
employed with a value of k set to 5; the dataset was partitioned into training and validation sets using a ratio 

https://doi.org/10.48161/qaj.v4n1a466


QUBAHAN ACADEMIC JOURNAL 

VOL. 4, NO. 1, March 2024 

https://doi.org/10.48161/qaj.v4n1a466 

 VOLUME 4, No.1, 2024 272 

of 0.2, ensuring that 20% of the data was reserved for validation purposes while 80% of the data was used in 
training. The experiments were repeated 20 times to ensure reliable and consistent results. For each 
experiment run under the five techniques, the following evaluation metrics were recorded: 

• Processing Time: The time in unit seconds taken to execute the feature selection process and
subsequent kNN classification was measured for each experiment to assess computational
efficiency.

• Number of Features Selected: The number of chosen features for each scenario was documented
to grasp the influence of feature selection on the model's performance.

• Classification Accuracy: The accuracy percentage of the kNN model in predicting ozone levels
using the selected features was evaluated for each run. This performance metric allowed for a
comparison of the model's effectiveness under different feature selection techniques. The
accuracy of each trial was computed utilizing Equation (12) wherein TP (True Positive) and TN
(True Negative) correspond to the count of accurately classified positive and negative instances,
while FP (False Positive) and FN (False Negative) represent the count of incorrect classified
positive instances and negative instances, respectively.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(12) 

Upon completing the 20 experiment runs for each technique, the minimum, maximum, and mean of the 
mentioned metrics (number of features selected, processing time, and classification accuracy) were 
calculated. This comprehensive analysis provided a clear understanding of the impact of using mWOA for 
both filter-based and wrapper-based feature selection on ozone level detection performance. The statistical 
results will be used as a foundation for deriving significant conclusions and understanding the strengths and 
benefits of the proposed mWOA approach over alternative methods, which will be discussed in the 
forthcoming Results and Discussion section. 

IV. RESULT AND DISCUSSION

This section presents a comprehensive evaluation of the proposed techniques for ozone level detection.
This section is divided into subsections focusing on three key evaluation criteria: processing time, number 
of features selected, and classification accuracy. The obtained statistical metrics, including minimum, 
maximum, and mean, are thoroughly analyzed to assess the performance of the WOA and mWOA. 

1. PROCESSING TIME

The comparison of processing time for various feature selection techniques in Table 1 provides valuable
insights into the processing time efficiency of different feature selection techniques in the context of ozone 
level detection.  

Table 1. Comparison of processing time (s). 

Techniques Minimum Maximum Mean 

Without FS # 0.0078788 # 0.0117073 # 0.0089632 

Filter-based WOA 0.2268366 0.3274791 0.2441505 

Filter-based mWOA * 0.2249756 * 0.2691878 * 0.2397550

Wrapper-based WOA 5.1148457 7.0697780 6.0286101

Wrapper-based mWOA * 4.1439817 * 5.3859644 * 4.8680684

Note: (*) = mWOA outperformed WOA; (#) = best results 

The processing time includes the entire process of feature selection steps (if any) and classification steps. 
Four techniques were compared: Without Feature Selection (Without FS), Filter-based Whale Optimization 
Algorithm (WOA), Filter-based modified Whale Optimization Algorithm (mWOA), Wrapper-based WOA, 
and Wrapper-based mWOA. The evaluation metrics are statistically measured based on the minimum, 
maximum, and mean values of 20 experiments.  
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Observing the processing time values based on Table 1, it is evident that the Without FS approach 
achieved the shortest processing time, with a range of 0.0078788 to 0.0117073 seconds. This is expected, as 
Without FS directly utilizes the entire dataset with classification without involving any feature selection 
process, resulting in the fastest execution with a mean value of 0.0089632 seconds. However, it is important 
to note that the Without FS approach does not consider feature relevance, potentially leading to suboptimal 
model performance due to irrelevant or redundant features. 

Moving to the filter-based and wrapper-based approaches, it can be observed that both WOA and mWOA 
introduce additional processing time as compared to Without FS due to involving the feature selection step. 
Among the filter-based approaches, the mWOA technique demonstrates slight improvement over the 
original WOA, with minimum, maximum, and mean processing times of 0.2249756, 0.2691878, and 0.2397550 
seconds, respectively. On average, filter-based mWOA outperformed WOA by 0.0043955 seconds. Similarly, 
in the wrapper-based category, mWOA proves to be more efficient than WOA, with processing times ranging 
from 4.1439817 to 5.3859644 seconds and a mean of 4.8680684 seconds. On average, wrapper-based mWOA 
outperformed WOA by 1.1605417 seconds. 

The results indicated by (*) in Table 1 highlight instances where mWOA outperformed WOA in terms of 
processing time. These improvements can be attributed to the modified control parameter of mWOA, which 
allows for a more precise exploration of the search area during feature selection. The ability of mWOA to 
achieve comparable or better results in less time than WOA makes it a more efficient and promising choice 
for ozone level detection tasks. Overall, the discussion of processing time reveals that the mWOA-based 
feature selection approach showcases computational efficiency while maintaining or improving the quality 
of selected features. This efficiency is crucial, especially when dealing with large datasets and real-time 
applications, where reducing processing time is of utmost importance. 

2. NUMBER OF SELECTED FEATURES

The results presented in Table 2 offer valuable insights into the number of selected features by different
feature selection techniques for ozone level detection. For the Without FS approach, all 72 features from the 
original dataset were used without any selection. While this approach provides a complete set of features, it 
may include insignificant ones, potentially leading to reduced model performance.  

Table 2. Comparison of the number of selected features. 

Techniques Minimum Maximum Mean 

Without FS 72 72 72 

Filter-based WOA 36 36 36 

Filter-based mWOA 36 36 36 

Wrapper-based WOA 4 26 12.1 

Wrapper-based mWOA #* 2 #* 20 #* 7.85 

Note: (*) = mWOA outperformed WOA; (#) = best results 

In the filter-based approaches, both WOA and mWOA selected 50% (36 features) of the total features from 
the dataset. The selection process involved sorting all 72 features based on their fitness value, with fitter 
features deemed more relevant. As a result, the top half of the features with the highest fitness values were 
chosen for inclusion in the model. Hence, the results of both filter-based techniques yielded the same number 
of selected features. 

Conversely, the wrapper-based approaches exhibited more variability in the number of selected features. 
The wrapper-based WOA technique selected between 4 to 26 features, with a mean of 12.1, indicating a 
flexible feature subset based on the evaluation of the kNN model's performance. Notably, the wrapper-based 
mWOA outperformed WOA in terms of feature selection as indicated in Table 2. The wrapper-based mWOA 
technique selected between 2 to 20 features, with a mean of 7.85.  

On average, the wrapper-based mWOA chose 4.25 fewer features than WOA. This difference is attributed 
to the modified control parameter in mWOA, which facilitated a more precise exploration of the search space 
during feature selection. As a result, mWOA identified a smaller yet more informative set of features 
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compared to WOA in the wrapper-based approach. In conclusion, the discussion of the number of selected 
features confirms the effectiveness of mWOA in achieving more compact and informative feature subsets. 

3. CLASSIFICATION ACCURACY

The comparison of classification accuracy for various feature selection techniques is shown in Table 3.

Table 3. Comparison of classification accuracy. 

Techniques Minimum Maximum Mean 

Without FS 92.95 92.95 92.95 

Filter-based WOA 92.95 92.95 92.95 

Filter-based mWOA * 93.50 * 93.77 * 93.75

Wrapper-based WOA # 93.77 94.85 94.31

Wrapper-based mWOA 93.23 #* 95.40 #* 94.49 

Note: (*) = mWOA outperformed WOA; (#) = best results 

The Without FS and the filter-based WOA approaches both obtained the same classification accuracy of 
92.95%. This suggests that using the entire dataset without feature selection or selecting 50% of the features 
based on the fitness values by WOA yielded similar predictive performance. 

In contrast, the mWOA approach in the filter-based category outperformed WOA in terms of 
classification accuracy, as indicated by (*). The minimum, maximum, and mean accuracy values for filter-
based mWOA were 93.50%, 93.77%, and 93.75%, respectively. On average, filter-based mWOA performed 
0.80% better than WOA. This highlights the effectiveness of the modified control parameter in mWOA, which 
contributed to a slight improvement in the model's predictive power. 

Regarding the wrapper-based approaches, the wrapper-based WOA achieved higher classification 
accuracy than the filter-based techniques, ranging from 93.77% to 94.85%, with a mean accuracy of 94.31%. 
Additionally, the wrapper-based mWOA demonstrated promising results, with accuracy values ranging 
from 93.23% to 95.40% and a mean accuracy of 94.49%. On average, wrapper-based mWOA performed 0.18% 
better than WOA. The performance of wrapper-based mWOA further emphasizes the significance of the 
modified control parameter, enabling mWOA to identify a more informative set of features, leading to 
improved model accuracy. 

In conclusion, the discussion of classification accuracy reveals the advantages of using mWOA for feature 
selection in ozone level detection. The results underscore the superior predictive power of mWOA in both 
filter-based and wrapper-based approaches, as compared to the original WOA method. The statistical 
analysis validates mWOA's potential as an effective feature selection technique, contributing to enhanced 
classification accuracy and ultimately leading to more accurate ozone level prediction models. 

V. CONCLUSION

This study presented a comprehensive investigation of ozone level detection through feature selection,
employing the modified Whale Optimization Algorithm (mWOA). The research aimed to enhance the 
accuracy and efficiency of ozone level prediction models by identifying the most informative features from 
the dataset. Through extensive experiments and evaluations, the effectiveness of the mWOA-based feature 
selection approach was thoroughly analyzed and compared with the original Whale Optimization Algorithm 
(WOA). 

Without feature selection, the processing time is the least. However, feeding all 72 features to the model 
does not help to improve the accuracy of ozone level detection. By introducing WOA and mWOA as feature 
selection techniques, their performances are tested in both filter-based and wrapper-based techniques. For 
filter-based techniques, although both mWOA and WOA selected the same number of features, their 
processing time and classification accuracy are not the same. Based on the filter-based results, mWOA 
outperformed WOA by 0.0043955 seconds less in terms of average processing time. Furthermore, filter-based 
mWOA exhibited an average classification accuracy that was 0.80% higher than that of filter-based WOA. 
As for wrapper-based techniques, the results demonstrated that mWOA outperformed WOA in terms of 
processing time, number of selected features, and classification accuracy. Comparing the wrapper-based 
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results, mWOA chose 4.25 fewer features than WOA on average. Besides, wrapper-based mWOA 
outperformed wrapper-based WOA by 1.1605417 seconds less in terms of average processing time. 
Moreover, wrapper-based mWOA exhibited an average classification accuracy that was 0.18% higher than 
that of wrapper-based WOA. 

According to the superior results of mWOA in both filter-based and wrapper-based techniques, the 
modified control parameter of mWOA enabled more precise exploration of the search space during feature 
selection, leading to improved efficiency and performance. The statistical metrics revealed that mWOA 
effectively selected a more concise and informative subset of features in less time, contributing to enhanced 
model accuracy without compromising computational complexity. The reduced number of selected features 
further supported the computational efficiency and real-world applicability of the mWOA approach. 
Nevertheless, while mWOA adeptly retains its effectiveness as highlighted by the experimental outcomes, it 
encounters the challenge of upholding the stability of its search strategy during exploration and exploitation. 

In conclusion, the findings of this study indicate that mWOA is a promising and efficient feature selection 
method for ozone level detection tasks. Its ability to improve classification accuracy, reduce processing time, 
and identify a concise set of informative features highlights its potential for practical applications in 
environmental research and atmospheric science. However, the limitation of mWOA is that the modification 
on the control parameter alone is insufficient to produce significant difference in the performance compared 
to original WOA. Future research may explore the application of mWOA in other environmental monitoring 
and prediction domains and extend the study to investigate its performance with different machine learning 
classifiers. Furthermore, addressing the enhancement of mWOA's stability in navigating exploration and 
exploitation phases stands as a prospective challenge, warranting investigation for further refinement in 
future research. 
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