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Abstract—Medical image segmentation plays an essential 

role in computer-aided diagnostic systems in various 

applications. Therefore, researchers are attracted to apply new 

algorithms for medical image processing because it is a massive 

investment in developing medical imaging methods such as 

dermatoscopy, X-rays, microscopy, ultrasound, computed 

tomography (CT), positron emission tomography, and magnetic 

resonance imaging. (Magnetic Resonance Imaging), So 

segmentation of medical images is considered one of the most 

important medical imaging processes because it extracts the 

field of interest from the Return on investment (ROI) through 

an automatic or semi-automatic process. The medical image is 

divided into regions based on the specific descriptions, such as 

tissue/organ division in medical applications for border 

detection, tumor detection/segmentation, and comprehensive 

and accurate detection. Several methods of segmentation have 

been proposed in the literature, but their efficacy is difficult to 

compare. To better address, this issue, a variety of measurement 

standards have been suggested to decide the consistency of the 

segmentation outcome. Unsupervised ranking criteria use some 

of the statistics in the hash score based on the original picture. 

The key aim of this paper is to study some literature on 

unsupervised algorithms (K-mean, K-medoids) and to compare 

the working efficiency of unsupervised algorithms with different 

types of medical images. 

Keywords—Medical Images, Segmentation, Partition Around 

Medoids, K-means, Feature Selection. 

I. INTRODUCTION 

Explain here about Medical Images, which have 
characteristics of a different nature than standard images. As 
an example of an important feature, there is usually a 
difference in the distribution of data between the target and 
source domains. These variations can lead to poor results 
when templates are explicitly applied to the medical image 
field in the general image field [1]. Most medical images 
suffer from insufficient contrast and clarity. This results in 
blurry or blurred edges (low contrast) between neighboring 
tissues, resulting in poor segmentation, error in tissue 
recognition. Contrast improvement to increase visual 
knowledge is also essential in implementing methods for 

capturing objective measurements from medical 
photographs. [2][3]. 

There are several methods widely used. For example, 
(ultrasound, mammogram, Ct-Scan, MRI). It is using 
ultrasound for cancers diagnosed. Although radiography is 
used to measure agglomerations in routine clinical practice, 
it increases the visualization of invisible and tiny tumors; 
ultrasound is more favored because it is more accessible, 
more affordable, and time-consuming for patients [4]. 
Furthermore, the predictive radiographic value is typically 
tiny. Patients of benign cancers, however, undergo needless 
examinations. As an aid to radiography, this constraint to 
radiography was solved by ultrasound [5]. 

A common technique used to classify early-stage cancer 
cells is X-ray imaging. For radiologists, However, it is 
impossible to examine hundreds of mammograms a day. The 
task is time-consuming and lengthy, which results in false 
negatives and false positives. This artifact includes strong 
gravity values and is optically close to unnatural, misleading, 
and avoiding adoption of micro-disease-carrier zoning 
strategies [6][7]. 

One of the most widely used emergency room screening 
methods for patients with brain injuries or those with signs of 
a stroke or elevated intracranial pressure is non-contrast head 
CT. The high availability and low timing of these tests make 
them a standard method of diagnosis [8]. In stroke patients, 
the principal objective of the diagnosis is to eliminate a 
computed tomographic hemorrhage based on its 
straightforward interpretation because the bleeding includes 
more severe and time-sensitive irregularities that can be 
rapidly seen in a CT scan, intracranial bleeding [9]. In 
patients with possible acute intracranial hemorrhage, an early 
interpretation of the CT scan is often crucial for evaluating 
neuro-operative care. Cranial fractures usually need urgent 
treatment when opened or stressed [10]. 

Methods of medical image segmentation for the 
interpretation of scenes and medical image processing, 
image-guided treatments, radiotherapy or improved 
radiological detection, etc., an essential processing stages in 

mailto:revella.eshaya@dpu.edu.krd
mailto:adnan.mohsin@dpu.edu.krd
https://doi.org/10.48161/qaj.v1n2a51


 

72 

 

natural images. Segmentation of images is described formally 
as "the partition of an image into a set of no overlapping 
regions whose union is the entire image" (Haralick & Shapiro 
1992) [11]. In general, image segmentation in image 
processing is an essential method that separates the whole 
image into many regions to isolate the area of interest [12]. 
All of these techniques that are used in analyzing medical 
images are among the machine learning techniques. 
Detection and diagnostics in understanding medical imaging 
effects are now more reliable and quicker using machine 
learning algorithms. A fascinating field of study is machine 
learning. It allows concrete patterns to be derived from 
instances [13][14]. An unsupervised learning approach would 
design an ideal clustering algorithm for localization [15] the 
Medical images. 

Unsupervised algorithms that cluster objects into groups 
increase the similarity between objects in a cluster and 
minimize the similarity between objects in various 
categories. This fascinating problem has been interesting for 
several years because of its many implementations [16]. 
Examples of unsupervised learning algorithms systems 
include (PAM, K-Mean). 

The Euclidean distance used to measure the minimum 
distance between the data subjects and the focus points of the 
cluster [17] is the basis of the classic K-means method. A data 
entity is assigned to the closest medium describing the class. 
Consistency and pace are the main advantages of K-means to 
divide the number of items into known classes. But according 
to the stage of initialization [18], each run can have different 
outcomes. Additionally, because of its emphasis on 
Euclidean distance, K-means is not ideal for all data types. 
For example, it would be improper to use the K method for 
mixed or categorical datasets [19]. This restriction is also 
valid for binary data, the most basic form of categorical data 
[20]. In comparison, another threshold is exposure to outliers 
[21]. 

K-medoids have been suggested as a potential alternative 
in the past [18]. These issues need to be answered. The K-
medoids method relies on the array of data items in a 
specified class as a class average. However, the critical 
distinction is that the former is dependent on the average, 
while the latter relies on the median as a representation of the 
cluster [22]. 

Many advancements in the application of machine 
learning [23][24][25] to the understanding of medical 
imaging tasks have been seen in recent years, With strong 
evidence that deep learning can conduct a range of medical 
imaging activities, including the identification and 
classification of diabetic retinopathy. [26] and the 
classification of skin lesions. They are either benign or 
malignant [27] with an equal specificity to that of medical 
practitioners. Deep learning algorithm was also learned to 
recognize radiological photos anomalies, for example, chest 
images [23][28], chest tomography [29][30], chest 
tomography [29][30], In addition to localizing disease pattern 
determination or Anatomical volumes [31][32] by 
segmentation algorithms, and computed tomography 
[24][33] by classification algorithms. 

A feature is an actual observable property of the process 
being studied Today [34]. As a result of technical 
development that contributes to tremendous data processing 
power, the amount of features used in a process is growing. 

All of the metrics are no longer true as the number of features 
grows, where selections need to be made. The topic of feature 
selection is to gain attention from researchers concerned with 
the discriminant analysis and classification problems. 
Likewise, we also encounter many possible features in many 
other applications that can be used for further classification 
activities. Therefore, it is generally a false choice to use all 
the traits we have for classification. Knowing the attributes 
that can lead to the highest classification outcome is also 
important. Therefore, the need for a limited number of 
discriminatory features is varied; it is cheaper and simpler to 
deal with the curse of dimensionality to collect a reduced 
collection of meaningful predictors, decrease computational 
pressure, allow us to understand the domain better, and boost 
the classification algorithm efficiency [35][36][37]. 

This paper mainly aims to study such literature on 
unsupervised algorithms (K-mean, K-medoids) and equate 
the operating efficiency of unsupervised algorithms with 
various types of medical images. 

 

Fig. 1. Analysis of Medical Images using Machine Learning Tools [30] 

II. MEDICAL IMAGES  

Researchers developed systems for automated processing 
until it became possible to view medical images and transfer 
them to a computer. A series of low-level pixel processing 
(edge line detector filters and area growth) and mathematical 
modeling (composition lines, circles, and ellipses) were first 
carried out during a medical image analysis in the 1970s to 
construct a composite system-based basis to solve a specific 
challenge. A range of "if-else" statements popular in AI is 
close to expert frameworks around the same period. These 
structures have been known as GOFII (Old Fashioned 
Artificial Intelligence). In the late 1990s, supervised methods 
used in analyzing medical images through training data to 
construct a method were popular [38]. 

 

Fig. 2. Medical images: Mammogram – Ultrasound – MRI [43] 
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A. Ultrasound Images 

Experts use ultrasound in image inspection systems 
because they produce high-frequency sound waves that 
permeate the human body, and as the waves bounce off the 
boundary tissue of the human body, distinctive echoes will be 
created, which the computer uses to produce the image. 
Where some palpable lesions (lumps) can be evaluated 
accurately to identify cysts in the human body, especially in 
the breast, and thus can help the radiologist to detect lumps 
[39][40]. 

 

Fig. 3. Transformation based for Ultrasound Segmentation: (a) The 
original Ultrasound, (b) Manual Delineation, and (c) Result of 

Segmentation [41] 

B. Mammogram Images 

In the current studies, mammogram has been focused on 
segmentation. These studies are often categorized according 
to their segmentation techniques into five groups, namely, 
threshold technique, conformation-based, active 
circumference, area elevation, and tissue-based [42]. In 
radiography, precise delimitation poses two key issues. 
Owing to the unbalanced tension on the tissues during 
acquisition, the comparison of the proximal area steadily 
decreases. During digitization, boundary illumination is 
further decreased in optical radiographs due to additional 
noise [43]. 

 

Fig. 4. Mammogram preprocessing for images from IN-breast and MIAS 

databases [43] 

C. CT-Scan 

CT scan is commonly used to evaluate patients with an 
acute head injury who need hospital admission and 
examination. Imaging allows an early assessment of the 
magnitude of the damage, which can be accessed easily using 
new, readily available, high-resolution multi-detector 
scanners. In anxious patients and those that are ventilated but 
dysfunctional because of extreme trauma, the short period of 
imaging and the ease of retrieval are of great benefit. Images 
slices that are degraded from moving objects can be repeated 
quickly. Imaging data may be visualized using brain or bone 
comparison windows to show bone damage and intracranial 
anatomy and reconstructed into 3D CT data sets [8]. 

D. Magnetic Resonance Image (MRI) 

The (MRI) data is a series of time back frame sequences. 
Because of the intense magnetic reaction and other external 
factors of the head movement, it is very noisy when used for 
brain imagery. For testing purposes, spatial filters will be 
used to correct the MRI results. MRI photos are taken 

remotely from the free BRATS website for the investigation 
of brain tumors. A selection of different disease images for 
study and analysis is accessible in the BRATS database [44]. 

 

Fig. 5. MRI in the first row & CT scan in the second row [45] 

III. UNSUPERVISED ALGORITHMS  

Clustering is an unsupervised classification, grouping 
data items of a very similar standard into the same group, 
whereas other objects of a different nature fall into separate 
categories—clustering algorithms. E.g., hierarchical 
clustering: Figure 3, are categorized into two central 
hierarchical clusterings or clustering. E.g., non-hierarchical 
clustering figures 6-7; K-means and K-medoids are typical of 
non-hierarchical clustering algorithms (PAM) [46]. 

  

Fig. 6. Hierarchal Clustering [47] Fig. 7. Partitioning Clustering [47] 

A. Partition Around Medoids (PAM) 

The PAM algorithm is a flexible and accurate algorithm 
for clustering [48]. Kaufman and Rousseau were the first to 
suggest the PAM algorithm [49]. This is one of the K-
Medoids strategies most useful. And the noise is stable, and 
the algorithm is an outlier. Medoids are not part of the 
continuous compilation of data by way of which they are part. 
A medoid is static, where the mean discrepancy between a 
medoid and other points in the data set is marginal [50][51]. 
The concept for the PAM algorithm is that the data sets will 
be separated into k subsets, and the cluster medoids will then 
be improved iteratively to minimize the targets. The Pam 
algorithm is chosen the number of k partitions in which the 
random k partitions are performed as Medoids. At each point, 
the exchange of current medoids for non-medoid items 
improving cluster efficiency is analyzed for non-medoid 
items from the datasets. The outcome is calculated in the 
cluster by dividing all distances from non-medoid artifacts to 
medoids [52]. 

The PAM algorithm is more robust than the K-mean 
because the outlier or specific other extreme values have a 
more negligible effect on the medoids than the mean value 
[53]. HOWEVER, the PAM algorithm has some limitation 
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that is normal to K-mean; it considers all characteristics 
similarly, for instance, regardless of their actual relevance 
[54]. As a result of technological development, the 
calculation of features used in the process is growing. The 
characteristics in real-world data have varying degrees of 
significance, and they can vary in reasonable degrees even 
within related characteristics. The distance estimation for 
characteristics has a crucial effect on the methods of 
classification, where small distance patterns in the space of 
characteristics are identical. The distance equations have 
their power and weakness, such that we can use the distance 
metric that applies to the application requires. When 
implemented with clustering algorithms, the typical 
Mahalanobis distance exhibits good performance but has 
some drawbacks [35][55]. 

K-Medoids is a classic grouping stratification technique 
that combines the n-object dataset into previously known k-
sets. A helpful tool is a silhouette to define k. As compared 
to k-mean, it is more potent for outliers and noise. Medoids 
can be defined as a mass object in which the average variation 
is negligible with all objects in the block, i.e., In the stated 
data set, this is the focal point [16]. 

The k-medoids algorithm starts with the computation of 
K medoids and uses some distance metric to assign each 
object of the dataset to the closest medoids. K-medoids then 
measures the swap cost of swapping Pi and Medoid Mi items 
as follows. 

 

 The algorithm takes the following steps when this cost 
decreases to a defined threshold—Datapoint P for each 
medoid M, such as P ≠ M. 

● K-MEDOID ALGORITHM 

 

Fig. 8. Flowchart of  K-medoids [3] 

B. K-means 

One of the fast, unattended learning algorithms that solve 
the widespread problem of clusters. The approach is used to 
identify data set by such prior fixed clusters in a 
straightforward and fast way (assuming k clusters) [56]. The 
algorithm is susceptible to the initial cluster centers that are 
chosen at random. To reduce this effect, the k-means 
algorithm can be performed many times. K-Means is an easy-
to-use algorithm in multiple trouble areas and is an excellent 
alternative to use random data points. One of the most 
popular approaches to solve the k-means problem is to find a 
minimum solution locally centered on a basic iterative system 
[57][58][59][60]. 

K-means are reduced by the square error difference 
between the cluster mean and the data points in the cluster. If 
we have any n-dimensional data points that the customer 
needs to group into a k-number of clusters with μk as the 
average of that cluster, then k-means are defined as the k-
number of clusters [61]. 

 

Where xi is a data point set consisting of I = 1, 2, 3, .., n, 
to be grouped into a cluster of clusters comprising k = 1, 2, 3, 
...., k, K-means are assigning patterns to the originally 
partitioned k clusters to minimize the squared error [61]. In 
the case of membership of non-decisive clusters, k-means 
will proceed to replicate the following steps. 

1) Add each pattern to its closest cluster and create 

new partitions. 

2) New cluster average estimation. 

 
A distant metric is another significant parameter required 

by k-means. Usually, for Euclidean distance metrics, k-
means measure the root of square discrepancies between 
object coordinates. It determines the Euclidean distance as 
follows: 

 

Besides Euclidean distance, the same description is 
available for Manhattan distance and Minkowski distance 
metrics. The actual difference between the points of a pair of 
objects is determined by Manhattan distance as follows: 

 

The generalization of the distances between Euclidean 
and Manhattan is the distance between Minkowski. Ordinal 
and quantitative factors should be used. The distance from 
Minkowski is represented in equation 4. 
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● K-MEDOID ALGORITHM 

 

Fig. 9. Flowchart of K-means [3] 

IV. RELATED WORK 

S. Hansen et al. [62] proposed an unsupervised 
supervoxel-based clustering method for hybrid PET/MRI 
lung tumor segmentation through patients. The procedure 
consists of two steps: first, a set of supervoxel PET/MRI 
features representing each patient. The data points for all 
cases are then translated into tumor and non-tumor 
supervoxels at the population level. The suggested system is 
assessed based on scans of 18 patients with a total of 19 non-
small cell lung cancer tumors and evaluated concerning 
manual descriptions given by clinicians. Inside the structure, 
studies research the efficiency of many widely used 
clustering algorithms and evaluate (1) the impact of tumor 
size, (2) segmentation errors, (3) the advantages of clustering 
across patients, and (4) the robustness of noise. 

C. Series [63] Explained that Alzheimer's is a common 
type of neurodegenerative disorder, such as advanced 
neurofibrillary tangles and amyloid plaque, characterized by 
weakened brain cells. The shrinking of the hippocampus part 
of the brain is one of the physical symptoms of Alzheimer's 
disease. The hippocampus is the smallest portion of the brain 
used to keep memories. Magnetic Resonance Imaging (MRI) 
is a non-invasive method for diagnosing Alzheimer's disease 
that helps patients with Alzheimer's disease determine brain 
activity. In this study, the technique K-Means Clustering and 
Watershed is used for fragments of hippocampus areas, 
which are part of the brain impacted by Alzheimer's disease. 
In this study, the threshold value is contrasted with the 
number of white pixels in videos. The analysis data were 
focused on a coronal slice picture of the open-access sample 
(OASIS) archive. Our research results in the two clusters K-
Means and Watershed diagnose Alzheimer's disease in the 
hippocampus area. 

L. Rundo et al. [64] Used the unattended Fuzzy C-means 
clustering (FCM) techniques in a two-stage computing 
system. An automatic subdivision of all three tissue types was 
used. It turns out that no new plan has yet answered this 
problem. For evaluation utilizing overlap and distance-based 
measurements, tissue-specific picture subdivision 
(pelvic/ovarian and vomiting disorders) and RCCD-data sets 
were analyzed. The findings revealed that the two-stage 

segmentation method outperformed the standard 
segmentation methodology for all the tasks of subdivision 
tests: set a multi-threshold, a technique for Otsu, and a K-
mean clustering algorithm for automated category number 
preference inference. Studies also found that incorporating 
spatial knowledge into the FCM algorithm typically yields 
more accurate segmentation performance, whereas variants 
of the FCM kernel are not helpful. In both the high-density 
and the low-density elements starting with 81.94 ± 4.76, 
83.43 ± 3.81, for the sub-segmentation tasks tested, the best 
spatial FCM configuration obtained an average dice-like 
coefficient value. 

P. G. YILMAZ et al. [65] investigated two separate 
follicle detection methods for polycystic ovary syndrome. 
The first technique consists of filtering noise, modifying the 
contrast, binarizing, and morphological processes. Median 
Filter, Average Filter, Gaussian Filter, and Wiener Filter for 
noise reduction were used for this technique, and then 
histogram equalization and adaptive thresholding were 
checked. Gaussian Filter and Wavelet Transform were 
chosen for the second approach for noise reduction, and 
clustering of k-means and morphological operations were 
applied to the images. Follicles were found with the Canny 
Edge Detection algorithm in the segmentation process 
performed for both techniques. The False Acceptance Rate 
(FAR) and the False Rejection Rate (FRR) were used to 
determine the consistency of the resurrection. 

I. H. Aboughaleb et al. [66] Hyperspectral imaging (HSI) 
has been used to analyze HSI data for breast cancer 
identification with advanced image processing and pattern 
recognition. In both malignant and natural tissues, spectral 
signatures have been excavated and assessed. Different 
responses to light transmission and absorption, especially 
reflection across the spectrum, are provided when modifying 
the optical properties of breast tissue ex vivo. Silent K-means 
a clustering algorithm for the hyperspectral data classification 
to test and detect cancerous tissue. This technique has been 
used to classify ex vivo breast cancer. Spatial, spectral maps 
have been developed to determine variations in the reflective 
characteristics of malignant tissue and normal tissue. 

P. K. B. Rangaiah et al. [67] Centered on permittivity 
calculation and image processing, this study used two 
strategies for classifying human burnt skin. The first 
approach uses an open-end coaxial probe technique for the 
sectoral calculation of permittivity (dielectric profiling, 
DEP). Secondly, the color variation of the burnt skin sample 
is analyzed by changing the picture. To analyze and assess 
results, statistics research is performed using techniques such 
as Variance Analysis (ANOVA) k-means. The experimental 
data were classified into five categories based on media 
distribution (dielectric profiles) and centroids as part of the 
classification (color profiles). The color image can be 
transformed into a gray image, and a single-dimensional 
array resized. Furthermore, the evaluation is carried out on a 
force scale, various center values, and a study of silhouettes. 
The subsequent clustering results can be used to combine the 
color variation of human skin burned to correlate Dielectric 
proprieties. To measure the level of the flame. 

H. Tai et al. [68] purposed to establish a novel method of 
attenuation correction based on adaptive clustering of K-
means. In order to enhance the discernment of these signals, 
it was possible to adjust GH filters by using a side-moving 
window technique. To prevent information leakage, the 
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signal separated from the same filter is then paired with 
overlap-adding technology. Using a 256 US Vera Sonics 
scanner with linear transducer L11-4v, experimental data has 
been collected. Data from. In vivo demonstrate that the US. 
H-scan imaging will configure the GH kernel by adaptive 
mitigation and balance the emerging attenuation spectrum 
(i.e., high-frequency shift). This process creates the H-scan 
US images and global attenuation correction strategies. 
Overall, it increases the ability of US imaging to measure the 
scale of acoustic dispersions through the imagery of diverse 
tissues for the characterization of tissues and improves its 
clinical use. 

R. Agrawal et al. [69] proposed a hybrid approach 
through the combination of median filter, k means clustering, 
Sobel edge identification, and morphological operations for 
brain lesion segmentation in various imaging modes. The 
median filter is a significant step in planning and collects 
impulsive noise from brain pictures, followed by k-means, 
Sobel boundary detection, and morphological processing. 
Regular data sets use output measures such as precise 
segmentation and runtime to verify the accuracy of the 
proposed automated method. Compared with a manual 
delineation by an expert radiologist, the approach suggested 
achieves a high precision of 94 percent. Furthermore, by 
expert delimitation using ANOVA and the correlations 
coefficient, high meaning values of 0,986 and 1, respectively, 
were achieved using a statistical significance test among 
lesions segmented by the procedure. 

D. Borys et al. [70] tested and implemented a few 
clustering-based, and they concentrated primarily on 
algorithms related to k-means to test and compare their 
accuracy. The authors have chosen the k-means algorithm, 
the k-medoids clustering, and the fuzzy C-means (FCM) 
approach in this group. The findings were verified using the 
gold standard of the anatomical and emission tomography 
data collection, co-registered with all methods. A Jaccard 
index has been used to measure the numerical values of both 
datasets. In clinical practice (standardized uptake value SUV 
with 2.4 threshare, which is a standard normal used) and with 
previously applied and validated procedures, a standard 
segmentation algorithm was compared based on a given 
threshold (including game-theoretical algorithm). The results 
for both methods were very similar, comparable to the SUV 
2.5 limit, but worse than the game-theoretical approach. They 
were very close. 

W. D. Kadhim et al. [45] used in this work on six MRI 
and CT scan images with various cluster numbers The K-
means algorithm. The delicate tumor areas were effectively 
extracted after extraction, in addition to other morphological 
operations such as opening and dilation. Segmentation is one 
of the most critical facets of the production of medical 
images. In the segmentation of the camera, the optical image 
is one of many pixel sets. Magnetic resonance imaging, MRI, 
and CT scanning are highly efficient imaging methods for the 
non-invasive study of the body's internal physiological 
structures. One of the most severe disorders is a bone tumor, 
and so it is a pressing need to distinguish species from the 
tumor areas. Radiologist delineations and the relative ratio of 
deviations between (0.63-1.75) percent and (0.34-1.51) 
percent were observed in the MRI scan image and the average 
surface area in the actual tumor areas. This result shows the 
high-quality performance of the classification-based 
segmentation approach. 

N. K. Student [71] shown that during brain/skull research 
regarding the position and identification of a brain tumor, the 
primary imagery tool is magnetic resonance imaging (MRI). 
Brain tumor diagnosis is an essential medical diagnosis 
technique. The brain MRI images display a complex brain 
cell network with osseous structures and assumed solid 
growth. A splitting process is, therefore, necessary to extract 
growth. In the original K-mean algorithm, the number of 
groups is determined by the user, i.e., user input. However, 
using the K-Means self-assembly algorithm to detect brain 
tumors with precision and limited execution time, this 
limitation is overcome. The Sobel edge detection system is 
used to separate the edges of the segmented brain tumor from 
the surrounding area. The number of groups is determined in 
the self-adaptive k-means group by calculating the peaks in 
the graph. To approximate its size and position, the portion 
divided into binary image formats is then processed. The gray 
version is used to obtain the compositional and chromatic 
characteristics of the essence of growth analysis. The final 
segmented fraction is added to the algorithm to estimate the 
tumor region by volume and estimate the circumference. 

P. Sarker et al. [72] analyzed multiple morphological 
processing used to extract the lung CT image from the 
background, noises, and airways. Then, k-means clustering 
segmentation-dependent algorithms are used to identify lung 
tumors. Centered on the Tumor Nodule Metastasis (TNM) 
classification indicated by the Tumor Nodule Metastasis 
(TNM) classification, volumetric analysis of lung nodules 
was performed by the World Health Organisation to predict 
tumor stages (WHO). TNM is used to detect lung cancer in 
its quantities, spread, and metastases. A dataset called 
SPIEAAPM Lung CT Challenge was used to separate lung 
tumors from Washington University, St. Louis, with 22,489 
CT images of 70 patients. The proposed 3D CT segmentation 
and classification method provides enhanced 95.68 percent 
accuracy with the correct recognition and simulation of the 
size, shape, and location of the variant, reduced measurement 
time, and the correct classification of the tumor point. 

S. Yin et al. [73] demonstrated that when performing 
multilevel gray image segmentation, the researcher shows the 
adoption of the entropy of the fuzzy C-section to find optimal 
thresholds. There are usually two limitations to the existing 
ambiguous partition entropy approaches, i.e., The C-section 
number has to be manually calibrated for various inputs, and 
only gray images can be processed using the processes. The 
essential step in the algorithm is the two-level segmentation 
factor to overcome these two shortcomings, using binary 
graph reductions to improve the entropy and the smoothness 
of the Gaussian partition. Multilevel images are segmented 
hierarchically by continuously applying the two-level 
segmentation factor: beginning with the color image data, the 
algorithm selects the color channel that can best divide a 
paired image into two labels. The quantitative studies carried 
out by regular grayscale images and the Berkeley 
Segmentation database demonstrate that this methodology is 
close to traditional MSM approaches, but has the advantage 
of being unsupervised, efficient, and easy to incorporate. The 
experimental results show that the hierarchical segmentation 
diagram presented can separate grayscale and color images 
efficiently. 

J. Yu, D. Huang et al. [74] proposed a method for image 
segmentation in this work, based on automatic coding and 
hierarchical clustering algorithm, to deal with fragmentation 
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in an uncontrolled way. More precisely, there are two stages 
to this suggested method: preparation and segmentation. In 
the training step, using a Stacked DE noising Auto-encoder 
(SDA), and divide the image samples into non-overlapping 
spots and extract deep-level representations of corrections, 
then perform unsupervised K-clusters and hierarchy on 
representations of this feature and establish an index tree 
structure. It achieves an arbitrary hashed image in the split 
step based on the structure of the index tree. However, this 
unregulated method has shown that it benefits relative to 
traditional uncontrolled segmentation strategies using sample 
images. Empirical assessments on many benchmark data sets 
show that the algorithm outperforms several other approaches 
in both time efficiency accuracy. 

A. Dharmarajan et al. [75] helped the oncologist decide 
while reducing the algorithm's implementation time, and it 
also advanced applications for medical treatment. For the 
study of lung cancer results, this is very suitable for selecting 
a mass production algorithm. Clustering is an essential data 
processing technique used to classify diseases in many fields, 
including medical diagnosis. It is the process of data 
aggregation by identifying correlations between the data 
based on its characteristics to get to know it. In this research 
analysis, the efficiency of clustering algorithms over their 
computational time was found using lung cancer data. 
Computational measures have been used to extract outcomes 
and compare the performance of algorithms given a small 
range of features of data on lung cancer. The utility of both 
algorithms was assessed based on the results obtained from 
this approach by choosing k-Means and k-Mediods 
segmentation-based clustering algorithms to analyze lung 
cancer data. The best output of the algorithm is reported for 
the chosen data definition. 

A. A. Pravitasari et al. [76] analyzed The 3D rendering of 
the MRI images. Using a Gaussian mixture model (GMM) 
with maximization of projections as an enhancement 
technique, the tumor area was segmented as a Region of 
Interest (ROI) in the MRI image. These pair segmentation 
strategies showed substantial improvements from the sagittal, 
coronal, and axial viewpoints as a consistent boundary of the 

tumor region to distinguish from the unaffected portion of the 
brain and the approximate tumor volume. Also, these 
findings were successfully visualized with an average volume 
of 749 mm3 for the 3D construction of the tumor site on the 
left side of the patient's brain. 

M. Kalra et al. [77] validated the developed approach to 
medical imagery. By adding both synthetic and actual 
datasets to the algorithm. And to test the algorithm's ability 
to diagnose complex real-world illnesses, such as brain 
cancers, pulmonary tuberculosis, and skin lesion melanoma. 
Observing and evaluating multimodal medical images via 
creating an unsupervised machine learning algorithm based 
on the finite inverted mixture model's online variable 
inference. Data mining is a broad field of study involving the 
detection of trends and the retrieval of characteristics that are 
implemented in different critical areas. Especially the clinical 
hand, which reported a quest for evidence to support 
clinicians in early identification, diagnosis, and disease 
prevention. In multimodal clinical image processing, 
developments in statistical approaches have contributed to 
the introduction of machine learning. 

K. Atrey et al. [78] planned to use a multimodal method 
to identify and confirm photographs of breast cancer by 
incorporating both ultrasound and mammography. Besides, 
the authors studying a particular segmentation technique that 
can use a two-method procedure to detect breast lesions 
reliably. Three common techniques have been validated and 
evaluated for the identification of lesions using ultrasound 
and mammography, for example, Means Fuzzy-c (FCM), 
Means K (KM), and DPSO DPSO (Darwinian Particle 
Swarm Improvement). The proposed dual model for 
detecting breast cancer was evaluated with performance 
metrics such as the breast mass lesion region, Jaccard Index 
(JI), and Dice Similarity Coefficient (DSC). Results showed 
that FCM surpassed other images in ultrasound and JI 
mammography: the highest mean (0.748) and lowered SD 
(0.124), DSC: highest average (0.851), and lowest SD (0.851) 
(0.851). (0.097). Hash accuracy: the lowest average SDD 
(0,92) (0.074). 

TABLE I.  A COMPARISON OF THE WORKING EFFICIENCY 

Ref. Year 
Working Efficiency Of Unsupervised Algorithms With Different Types Of Medical Images 

Methods Datasets Feature Selection Results 

[62] 2021 

Determine a set of superoxel PET / 
MRI features by each patient and 

convert data points and classify them 
into ultrafast and non-neoplastic 

neoplasms at a different level. 

Hybrid lung tumor in PET & 
MRI 

unsupervised 
algorithms super 

voxel (K-means, 
Hierarchical E-M-C, 

Spectral) 

Noise stability in spectral clustering and 

segmentation of PET / MRI tumors with A 
small number of incomplete tumors and a 

minimal number of false positives. 

[63] 2021 

Diagnosis of Alzheimer's disease by 

analyzing and comparing the 

threshold value and the number of 

white pixels in the images. 

MRI of an Alzheimer's patient 

Using K-Means 

Clustering & 

Watershed 

Hippocampal region segmentation for 

Alzheimer's disease diagnosis based on the 

K-Means Clustering and watershed 

approach 

[45] 2020 

Effectively excise the exact tumor 

areas with MRI and CT scans with 
different cluster numbers. 

MRI images & CT-scan 
K-mean clustering 

algorithm 

Relative differences between (0.63-1.75) 
percent for MRI images and (0.34-1.51 

percent) for CT images and measured 

surface areas for divided tumor areas 

[64] 2020 
Automated tissue segmentation based 

on Fuzzy C-Means Clustering 

Community unregulated techniques 

CT datasets of ovarian (pelvic/ 
ovarian & omental) cancer and 

renal cell carcinoma 

K-mean clustering 

algorithm 

After the spatial data was incorporated 
into the FCM algorithm, the segmentation 

results were more detailed. 

[65] 2020 

Using a medium filter, Gaussian 
filter, and a Winner filter to filter 

noise, contrast adjustment, binary 

and morphological operations 

Ultrasound image of Polycystic 

Ovary Syndrome 

k-means clustering & 

morphological 
operations 

Using Canny Edge Detection algorithm to 

find follicles in the hashing process 

[66] 2020 
Hyperspectral imaging and 

automated image analysis for pattern 
HSI evidence for the diagnosis 

of breast cancer 
Silent K-mean 

clustering algorithm 
spatial-spectral images were produced 
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detection to test and detect cancerous 
tissue 

for hyperspectral data 
classification 

[67] 2020 

Permittance segmentary calculation 

(dielectric profiling, DEP) through an 

open-ended coaxial test procedure 
and a decoloration of the brûled skin 

by picture care. 

Medical image of human burnt 

skin 

Variance Analysis 

(ANOVA) & k-
means 

The color difference of the burned human 

skin using the aggregation results obtained 
from the dielectric properties. 

[76] 2020 

Dividing the tumor region in the 
MRI image as a region of interest 

(ROI) through a Gaussian mixture 

model (GMM) with maximizing 
projections as an improvement 

technique. 

Brain tumor detection through 

MRI 

K-means cluster for 
color-based image 

segmentation with K-

medoid were both 
used to distinguish 

the diseases. 

3D construction of the tumor site on the 
left side of the patient's head with an 

estimated 749 mm3. 

[77] 2020 

Online variable inference for limited 

inverted admixture type, multimodal 
medical image examination, and 

interpretation 

MRI of brain tumors, 

pulmonary tuberculosis, & 

melanoma skin lesion. 

Unsupervised 
Algorithms 

The best predictor was generated by 

learning the data set at the same time and 
updating the best predictor of future data 

at each point. 

[78] 2020 

Detection and confirmation of 
photographs of breast cancer by 

combining both ultrasound and 

mammography 

Breast cancer images: 

(ultrasound & mammography) 

K-means (KM), 

Fuzzy-C-means 
(FCM) & (DPSO) 

FCM outperformed those in ultrasound 

&mammography images in identifying the 
lesion. 

[69] 2018 

Use output metrics such as 

segmentation precision and execution 

time to determine the consistency of 

the proposed automated system on 
regular datasets. 

(Ct-scan & MRI) for brain 
images 

median filter & k- 
means clustering 

The statistical significance test for 

separated lesions using the automatic 
approach resulted in high significance 

values of 0.986 and 1. 

[72] 2018 

Use multiple morphologies to extract 

lung CT images from background, 
noise, and airways, using the 

SPIEAAPM Lung CT Challenge 

dataset. 

CT images for lung cancer 
k-means clustering 

segmentation 

dependent algorithms 

Better output with 95.68% accuracy in 

accurate tumor identification, variable 
size, shape and position visualization, less 

calculation time, and appropriate 

classification of tumor stages. 

V. COMPARISON AND DESICCATION 

This research paper focused on the segmentation of 
medical images based on algorithms that are not supervised. 
The results were satisfactory but different due to the different 
types of medical images. However, the algorithms were 
working to reduce noise to determine the differences between 
them and normal. Pictures. So that the diagnosis is more 
accurate, and from these medical images: CT, ultrasound, 
magnetic resonance imaging (MRI), mammography, as well 
as its application to various samples, tumors, and diseases. 

In previous studies, we find that unsupervised algorithms 
worked with segmentation and analysis of ovarian cancer, 
breast cancer, and lung cancer with satisfactory and accurate 
results, as we find in multiple morphological processing to 
extract a lung CT image from background, noise, and 
airways, using a dataset called SPIEAAPM Lung CT 
Challenge. For lung cancer, the outcome was the best output 
with an accuracy of 95.68 percent inaccurate tumor 
identification, visualization of variable scale, form, position, 
less time to measure, and adequate description of tumor 
phases. 

The variance analysis (ANOVA) focused on the 
permittivity (dielectric sampling, DEP) of sectoral computing 
using an open-ended coaxial probe technique. On processing 
the images of color change in the sample of burned skin and 
determining the degree of burn, the results were used to 
compare the dielectric properties with the different 
colorations of the human burned skin. 

The outcome was spectral-spatial image generation, as 
with hyperspectral imagery (HSI) with advanced imaging and 
breast cancer sensing with advanced image processing and 
pattern recognition. 

The hippocampal component of C-means Clustering and 
Watershed reported Alzheimer's disease compared with the 

threshold. The number of white pixels in the photographs 
through magnetic resonance imaging (MRI) of an 
Alzheimer's patient. Brain tumor detection outcomes were 
better with K-medoid learning strategies. They pooled 
learning strategies produced the best predictor by learning to 
collect data simultaneously and update the best predictor of 
future data ever. 

VI. CONCLUSION 

This paper provides an unsupervised approach to medical 
image recording and does not involve any supervised 
knowledge. Where partition assessment is a significant 
difficulty in the study of images. E.g., approaches with 
recording precision by using large-scale MRI brain-data-sets 
for recording newer 3D images during more rapid volume 
orders. The model analysis illustrates that it can be stable for 
modular organization and can be constructed according to 
multiple datasets and adjusted easily for precise and runtime 
variations. The main objective of this paper is to review some 
of the research on unsupervised algorithms (K-mean, K-
medoids), and to compare the working efficiency of these 
algorithms with different types of medical images. This route 
analyzes and processing of medical images can be 
significantly accelerated while promoting emerging 
developments in learning-based documentation. 
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