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ABSTRACT: In the domain of the Internet of Things (IoT), data reliability is important, particularly within 

critical sectors like healthcare, environmental surveillance, and smart grids. Nevertheless, data transfer from 

the physical domain to the digital layer is susceptible to trust-related challenges encompassing data 

integrity, genuineness, and credibility. Predominantly, prevailing models for trust assessment primarily 

concentrate on the conduct of nodes, thus disregarding the direct evaluation of data packets. This particular 

constraint results in an insufficient validation of data credibility, thereby failing to consider pivotal elements 

like timeliness and accuracy. Furthermore, utilizing cloud-based packet evaluation frameworks frequently 

leads to inaccuracies, unreliability, and energy inefficiencies owing to the transfer of untrusted data. The 

current study introduces a streamlined trust assessment framework called the lightweight trust evaluation 

model (LTEM), custom-built for IoT settings to combat these obstacles. LTEM meticulously examines node 

behavior and data packets via a multi-tiered approach encompassing nodes, cluster heads (CH), and base 

stations (BS). Moreover, the proposed model's architecture considers energy usage by averting the 

transmission of untrusted data. Simulation results showcase the supremacy of LTEM compared to existing 

models by achieving a detection rate of 99% for untrusted data packets, outperforming the detection rates 

ranging from 30% to 75% observed in other models. Moreover, LTEM enhances the operational efficiency of 

sensor nodes regarding energy consumption, achieving an average energy utilization of 1.33J out of 4J, 

resulting in savings of approximately 2.67J on average, thereby extending the lifespan of nodes. 

Keywords: Internet of Things; Trust Evaluation; Trust Value; Trust Model; Holistic Trust Model 

I. INTRODUCTION 
The Internet of Things (IoT) has recently emerged as a significant area of focus in both the academic realm and 

the information technology industry [1]. The increasing popularity of the IoT has opened up avenues for a robust 
method of representing the physical world comprehensively and enabling significant interactions with the tangible 
environment [2, 3]. At present, a vast network of interconnected IoT devices, comprising physical entities embedded 
with sensor nodes possessing IP addresses for seamless Internet connectivity and inter-device communication, is 
demonstrating promising potential across a multitude of sectors [4-6]. These domains encompass a broad spectrum 
of applications, ranging from industrial sectors like monitoring oil wells, enhancing transportation systems for 
vehicles, and optimizing agriculture practices to more personal settings, including smart home technologies, 
wearable devices, healthcare solutions, automotive innovations, and efficient power grid systems [7]. Figure 1 
shows the popularity of various IoT applications in 2024 according to the popularity index of interest and relative 
usage. 

These instances merely scratch the surface of the myriad application areas where this groundbreaking paradigm 

is poised to gain considerable traction. As per [3], the IoT ecosystem hit a significant milestone in 2020 by surpassing 

50 billion connected objects, and this figure is anticipated to triple by 2025, as illustrated in Figure 2. This impressive 

expansion not only underscores the far-reaching impact of the IoT but also underscores its enduring significance as 

a catalyst for technological advancement and ingenuity. 
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FIGURE 1. The popularity of the IoT applications in 2024 

The advent of IoT has introduced new challenges to IoT services and devices due to its diverse data sharing, 

dynamic nature, and diversity of devices involved. These challenges are often addressed by addressing security 

issues rather than assessing specific risks across IoT entities and services [8, 9]. This approach could lead to serious 

harm and unforeseen danger if a malicious object exploits this information. Another issue related to the reliability 

of data collection is important in the field of IoT [10, 6]. When large amounts of data are collected from the physical 

sensing layer, and there is a lack of trustworthiness due to damaged sensors or malicious input, it can seriously 

affect the quality of IoT services. Even if network layer and application layer trust can be fully provided, the quality 

of IoT services will be greatly affected and difficult to accept by users [6, 11]. Therefore, trust in IoT is crucial to 

ensure reliable data and secure service provision among various IoT objects. Formerly, trust has become a 

fundamental requirement for strong security measures [9]. However, trust as a concept lacks a concrete definition, 

as it varies depending on the individuals involved and the specific situation and is influenced by both measurable 

and non-measurable factors [6, 7].  

 

 

 

 

 

 

 

 

 

 

FIGURE 2. Growth of IoT Devices [1] 

This complexity means that trust encompasses a variety of attributes, including an entity's capabilities, strength, 

goodness, reliability, availability, and other characteristics [8]. Consequently, trust poses a greater challenge than 

ensuring security, especially in emerging fields such as information technology in the IoT [9]. The idea of trust in 

IoT revolves around evaluating the behavior of connected devices within the same network. The level of trust 

between two devices significantly affects how they interact in the future [12]. When devices trust each other, they 

are more likely to collaborate by sharing data, services, and resources to a certain extent. The trust evaluation model 
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involves calculating and analyzing trust between devices, enabling informed decisions to establish efficient and 

reliable communication between devices. 

The trust evaluation model is practical for solving trust-related issues in the context of IoT. These solutions have 

proven effective in enhancing security measures, aiding decision-making processes, identifying untrusted behavior, 

isolating untrusted entities, and rerouting functionality to trusted domains [10]. Researchers have devised various 

approaches, including those highlighted in references [10-22], as potential answers to trust-related challenges. 

However, these solutions still have certain limitations, including the inability to address trust issues 

comprehensively, difficulties handling large amounts of data and changing behavior, high energy consumption, 

quantifying the uncertainty associated with untrustworthy behavior, and selecting the most appropriate 

components. This work addresses the challenges of modeling trust and dealing with IoT's dynamic nature and 

heterogeneity [10]. 

Different trust evaluation models have been introduced by [10-22] to address the above challenges; however, 

some issues need to be considered, such as: 

• Lack of consideration for data packet evaluation: Existing trust evaluation models mainly focus on node 

behavior without adequately considering the trustworthiness of data packets. This problem highlights the 

need for a trust model that can simultaneously assess both node behavior and data packet. 

• Limitations of existing trust evaluation models: The research acknowledges that current trust evaluation 

models in the literature utilize a certain set of metrics to assess trustworthiness, primarily based on node 

behavior. However, these models may need to fully address the unique attributes of data, such as timeliness 

and validity, which are crucial for evaluating data trustworthiness. 

• Energy consumption and transmission of untrusted packets: The transmission of untrusted data packets 

affects the system's accuracy and reliability and leads to energy wastage in the nodes. The research 

recognizes the importance of avoiding this to reduce energy consumption and extend the node's energy 

battery. 

A lightweight trust evaluation (LTEM) in an IoT environment is proposed to solve the above trust issues in IoT 

applications. The significance of this model is summarized as follows: 

• The proposed model considers three main factors, data packet, node behavior, and energy, that contribute 

to detecting most untrusted packets, unlike the other models that consider only one or two factors.   

• The evaluation in the proposed model has been performed at three levels: node, CH, and BS. This helps 

improve the application's reliability as the packets will be evaluated at each level, node, CH, and BS. It also 

helps to reduce energy consumption because the untrusted packets are detected in the beginning at the node 

level. If it is untrusted, they are dropped before being transmitted to CH. 

• The proposed model's accuracy is very high because each packet is evaluated individually. Furthermore, it 

considers all factors, including node data, node behavior, and energy factors. The proposed model evaluates 

node, CH, and BS packets at each level. 

• The proposed model shows each node's confidence level/Trust Value, which helps the administrators know 

the node's status and take the necessary actions when the status is suspected or abnormal to avoid 

unexpected errors in the IoT application. 

The rest of this paper is organized as follows: Section II investigates and discusses related work. Section III 

describes the proposed model. Section IV reports the experimental investigation, result analysis, and evaluation of 

the proposed model and the comparison results with existing models. Section V concludes the paper and suggests 

some future research directions. 

II. RELATED WORK 

 The research of [13] introduces a trust evaluation model using the entropy method to identify potentially 

malicious nodes. The model measures direct and indirect trust values by examining the characteristics of relevant 

behavioral nodes and uses entropy methods to establish appropriate weight factors. It is worth noting that this 

method only detects malicious nodes based on their behavioral patterns without considering the content of the 

packets transmitted by these nodes. 

The researchers in [3] introduced a trust management model specifically designed for IoT devices and services. 

The model utilizes Simple Multi-Attribute Scoring Technique (SMART) and Long Short-Term Memory (LSTM) 
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algorithms. SMART calculates trust values, while LSTM detects changes in behavior by comparing them with a 

predefined trust threshold. The model's main function is to pinpoint instances of untrustworthy behavior and 

isolate nodes exhibiting such behavior. However, the study did not cover trust-related data packets. 

In [14], a trust management system model is introduced that aims to handle trust-related aspects in the context 

of inter-domain communication during the deployment of services in IoT networks. Their model mainly focuses on 

centrally controlling client service requests and managing the storage of trust values and certificate generation. 

However, more is needed to solve the problem of system scalability fully. Furthermore, the model does not consider 

objects with extensive social connections or clients vulnerable to various attacks, thus excluding them from its scope. 

Another study [15] proposed a trust analysis method using information entropy to address trust-related 

challenges in IoT communication terminal power distribution. This approach involves establishing direct trust 

values based on exponentially distributed importance. Subsequently, the direct trust value is adjusted using the 

selected forgetting factor and sliding window. Furthermore, the unpredictability of direct trust values is evaluated, 

and indirect trust values are introduced to address potential errors in direct trust evaluation. In addition, a 

comprehensive analysis of indirect and direct trust values is performed to improve the accuracy of the assessment. 

Experimental results show that the technique effectively resists collisions and resist attacks. However, since this 

model relies on many parameters and complex calculations, some limitations exist in determining the weights and 

energy consumption. 

The work in [12] proposed a unified calculation method based on models and fuzzy logic combined with a multi-

criteria decision-making method. This method is used to evaluate trust weight. This study highlights the fuzzy 

mechanism's effectiveness in multi-criteria decision-making, demonstrating its superior ability to select reliable 

acquaintances in the Social Internet of Things (SIoT) context. It has also been suggested that this approach can be an 

important tool for uncovering trust-building properties in SIoT social objects. 

The study in [5] proposed a benefit-centered model for organically establishing social connections between 

Social IoT nodes (SIoT) in a virtual community environment. This model efficiently computes trust between social 

nodes by considering user preferences related to shared interests. Furthermore, the authors introduce a system that 

employs recommendations based on similarities between service requesters and providers to improve service 

quality. Nonetheless, it is worth noting that these studies do not focus on the classification and prioritization of trust 

indicators or parameters when validating friendships in the context of SIoT. 

In [16], a quantitative trust value model was introduced for identifying node behavior within Wireless Sensor 

Networks (WSN). The model involves the selection of various trust factors related to the behavior of sensor nodes. 

In order to ensure objectivity and reduce the impact of subjective settings, each trust factor is determined using the 

entropy method. Furthermore, the Dumpster-Shafer (D-S) theory is adopted to derive and consolidate trust, and 

statistical factors related to node behavior are introduced to refine the overall results. Notably, the model exhibits 

robustness against attacks and the ability to identify malicious nodes. The security of data packet forwarding is 

achieved through the combination of the entropy method and D-S theory. However, it is worth noting that the 

model's calculation process uses complex algorithms, resulting in increased energy consumption. 

[17] introduces a trust model scheme rooted in the Dumpster-Shafer evidence theory. This scheme considers the 

spatiotemporal correlation of data collected by sensor nodes in nearby areas and approximates node credibility. 

Utilizing principles from D-S theory, this trust model is designed to assess the degree of interaction related to trust, 

uncertainty, or distrust. It can also be used as a tool to estimate direct and indirect trust values, using a flexible, 

comprehensive approach that allows the calculation of overall trust to classify potentially malicious nodes. 

Compared with traditional methods, this method has advantages in identifying malicious nodes and improving 

data fusion accuracy. However, there is a possibility for improvement in achieving a better balance between 

increasing energy efficiency, reducing redundant information, and ensuring impartiality in credibility assessments. 

The research described in [2] proposes an adaptive trust management mechanism tailored for Wireless Sensor 

Networks. First, a node's trustworthiness is assessed based on its performance during interactions within its local 

information environment. Subsequently, an overall trustworthiness score is derived by merging the energy 

evaluation and trust endorsement metrics of other nodes with higher trust levels. In addition, node management 

and node reliability are constantly updated. Simulation and analysis results confirm that this method accurately 

and comprehensively depicts the credibility of nodes. However, it is worth noting that relying on the trust values 
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of other nodes (which may be compromised) in trust calculations may lead to incorrect recommendations and 

abnormal overall trust scores. 

As described in [18], the Trust and Energy Aware Routing Protocol (TERP) routing protocol relies on a 

combination of trust, residual energy, and hop count parameters weighted accordingly to establish routes within 

Wireless Sensor Networks. Trust calculation in TERP involves a weighted average of direct and indirect trust, which 

is determined by recommendations from neighboring nodes. Additionally, nodes exchange information about their 

remaining energy levels. However, TERP's detection of malicious nodes is entirely based on evaluating 

communication trust. 

In their research [19], a cluster-based centralized trust model was introduced as a solution to address the security 

issues and obstacles associated with IoT. The main goal of this research revolves around building a centralized trust 

framework tailored for IoT applications. To achieve this goal, the model employs intra- and inter-cluster analysis to 

determine the trustworthiness of node data and the presence of anomalous data. Within this framework, a node's 

data credibility is assessed by reviewing all node-sensing information's completeness, uniqueness, consistency, and 

accuracy. 

In [20], a trust management model tailored for SIoT-based networks is introduced, aiming to evaluate the 

behavior of social entities. The assessment of node trustworthiness involves utilizing various trust metrics, 

including direct trust (based on first-hand information), indirect trust (based on second-hand recommendations), 

energy consumption, centrality, shared interests within the community, and service ratings. The proposed scheme 

implements regular synchronization of trust updates to enhance its effectiveness and reliability. Furthermore, the 

study includes an analysis of SIoT network performance and validates the reliability of the trust model even in the 

presence of selective forwarding attacks, especially ON/OFF attacks. However, there is still a need for improvement 

in detecting intruder patterns, especially when trust values are relatively low. 

The basic function of WSN is to sense the environment and forward the sensed data to the BS. Malicious nodes 

may modify the data before forwarding it to the BS. MAC (Message Authentication Code) can protect data integrity, 

but MAC encryption may only be useful if the misleading data originates from the malicious node itself [21]. 

However, an effective data trust model may mitigate such attacks. This study [6] introduced a provenance-based 

trust management solution to establish trust among connected IoT devices. It provides a way to assess data 

reliability from a specific IoT device objectively. This model provides solutions to the data-related trust of IoT 

devices. Reliable solutions are needed to reduce resource pressure on space, response time, and manager 

performance. 

In [22], a trust-based data fusion mechanism is introduced. It utilizes a trust evaluation model that computes 

trust values using the average weight of the comprehensive trust degree. This comprehensive trust degree considers 

three factors: data trust, behavior trust, and historical trust. Data trust is determined from sensor data processing; 

behavior trust is based on node behavior during data transmission, and historical trust begins with the maximum 

value and is updated with the comprehensive trust. The final trust value is recorded in a list and used for data 

fusion. This model effectively manages node status and prolongs node survival. Additionally, it exhibits superior 

anomaly detection compared to other models due to its consideration of data, behavior, and historical inertia. 

In [23], it realizes dynamic trust evaluation through the dynamic adaptation of direct and indirect trust weights 

and the refinement of mechanism parameters. The calculation of direct trust considers energy trust, data trust, 

communication trust, and other factors and combines penalty factors and adjustment functions. Indirect trust, on 

the other hand, is endorsed and evaluated by an external third-party trust source. Furthermore, the comprehensive 

trust score is determined by dynamically assigning weights to direct and indirect trust and then combining them. 

In addition, the author proposes an update mechanism that utilizes sliding windows and adopts an ordered 

weighted average operator to enhance the system's flexibility. 

In another study in [24], the Efficient Distributed Trust Model used the three key trust components: 

communication, data, and energy. Communication trust is derived from the evaluation of direct trust and indirect 

trust. Direct trust is determined by analyzing forwarding behavior using the beta distribution method, while 

indirect trust is established through the trust chain method. On the other hand, data trust is established by 

evaluating the differences between sensor data and average data from sensors within the same geographic area. 

Finally, energy trust relies on the node's remaining energy reserves. However, it is assumed that the node knows 
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the initial energy levels of its neighbors, which may only sometimes be feasible. Furthermore, methods that use 

averages to calculate data trust become ineffective in cases where malicious nodes transmit high outliers that 

significantly deviate from legitimate sensor data. The comparison of the proposed LTEM model to the previous 

works is tabulated in Table 1. 

Table 1. Comparison of LTEM and the previous work 

 

III. THE LTEM MODEL 

The general architecture of the LTEM is based on cluster architecture, as shown in Figure 3. The cluster 

architecture includes member nodes, CH, and BS. The nodes are distributed in a cluster, each with a Cluster Head. 

The node collects and transmits data from the environment to CH. The CH aggregates data from its member nodes 

and forwards it to the BS. The node in the LTEM contains a sensor and an RFID reader. The sensor is responsible 

for reading the body temperature of the object. Similarly, the reader is used to scan the RFID tag that is attached to 

the object. Therefore, the node transmits the sensor values and RFID tag data to CH. After that, the CH aggregates 

data from each member node and transmits it to the BS. Finally, the BS analyses the data and forwards it to the 

online cloud. 

A lightweight trust-evaluation model in IoT applications is proposed to ensure the sensed data is trusted and 

transmitted to the cloud reliably. The evaluation of packets in the LTEM is carried out at three levels: at nodes, CH, 

and BS levels. The evaluation of packets in the LTEM includes three factors, as shown in Figure 3: data packet, node 

behavior, and energy factor. The trust metrics used in the LTEM are based on the flowing references [16, 23, 25, 26, 

27, 28], which are: 

• Timestamp (𝑇𝑆) 

• Out-Range (𝑅𝑎𝑛) 

• Data Repetition (𝐷𝑅) 

• Delay in transmitting a packet from Node to CH (𝐷𝑒𝑙𝑎𝑦_𝑁_𝐶𝐻) 

• Energy consumed to a transmitted packet from Node to CH (𝐸𝐶_𝑁_𝐶𝐻) 

• Delay in transmitting a packet from CH to BS (𝐷𝑒𝑙𝑎𝑦_𝐶𝐻_𝐵𝑆) 

• Energy consumed to a transmitted packet from CH to BS (𝐸𝐶_𝐶𝐻_𝐵𝑆) 

• Tag Validation (𝑇𝑉) 

 

Ref. No 

Behavior 

Node 

Trust 

Data   

Node 

Trust 

Energy 

Consumption 

Trust 

Thing Node Cloud Complexity Lightweight 

[2] √ x √ - - - x - 
[3] √ x x - - - x √ 
[6] x √ x - - - √ x 

[13] √ x x - - - x √ 
[14] √ x x x x √ √ x 
[15] √ x x - - - √ x 
[12] √ √ x - - - √ x 
[16] √ x x - - - √ x 
[17] x √ x - - - √ x 
[18] √ x √ - - - x - 
[19] x √ x x √ x x √ 
[20] √ x - - - - x - 
[21] x √ x - - - x x 
[22] √ √ x x √ x √ x 
[23] x √ √ - - - x - 
[24] x √ √ - - - - x 

LTEM √ √ √ √ √ √ x √ 
Annotation: √ -Considered,  x  Not Considered,  - Not Mentioned 
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FIGURE 3. Cluster architecture of the LTEM 

Some metrics are related to the data node, while others are related to the node behavior and node energy factor. 

Based on these trust metrics, the LTEM evaluates whether the packet is trustworthy or not. If the packet is 

trustworthy, it will be forwarded to the cloud; otherwise, it will be dropped, as shown in Figure 4. 

 

 

FIGURE 4. Trust metrics of the LTEM 

Figure 5 shows the overall process of the trust evaluation model, which starts from the node (the node includes 

a temperature sensor and an RFID reader).  

First, the node checks the body temperature of an object that has a range 𝑂𝑢𝑡 − 𝑅𝑎𝑛𝑔𝑒(𝑅𝑎𝑛) (of 39°C – 43°C) 

[27]. The data packet is incorrect and discarded if the sensed data is greater than the maximum or less than the 

minimum range. However, if it is in range, it will be accepted, and the node will check the next metric, timestamp 

(𝑇𝑆), which is used to verify the tag ID. After the reader scans the RFID tag, the tag responds by sending a message 
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(𝑇𝑎𝑔_𝐼𝐷, 𝑜𝑏𝑗𝑒𝑐𝑡_𝑖𝑑) and a timestamp (𝑇𝑡) of the tag's current time. When the reader receives the message and 𝑇𝑡, 

it compares the reader's current time (𝑇𝑟) with the tag's time and calculates the difference between them. If the 

result exceeds the time threshold (&𝑇), the authentication is denied, and the packet is dropped. Otherwise, the tag 

authentication is accepted. After that, the node checks the next metric, 𝐷𝑎𝑡𝑎 𝑅𝑒𝑝𝑒𝑎𝑡𝑒𝑑 (𝐷𝑅). Once the node scans 

the RFID tag and reads the body temperature of the object, the node compares them with the previous data packets. 

If they are similar, the packet is duplicated and will be dropped. Otherwise, it is valid, so the packet is trusted. 

Then, the node will send it to the Cluster Head. Once the object reaches the communication range, the sensor reads 

its body temperature, and the reader scans the tag ID. Nodes evaluate the sensed data and tag ID against 𝑇𝑆, 𝑅𝑎𝑛, 

and 𝐷𝑅. The packet evaluation Algorithm (1) at the node level is described in the following pseudocode. 

 

 

FIGURE 5. Packet evaluation process from node level to cloud level in LTEM 
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Algorithm (1) Evaluation at Node  

1 𝐈𝐧𝐩𝐮𝐭:  
2      Temp (c), Temp (p), Tagid(c), Tagid(p), Tr, Tt , &T, Max_R, Min_R      

3 𝐎𝐮𝐭𝐩𝐮𝐭:   
4       St either 1 Send packet or 0 remove packet. 
5 𝐁𝐞𝐠𝐢𝐧:  
6         Set Tag_id(p) previous reader  tag ID scanned by a reader                     
7        Set Temp (p)  previous temperature value of the object read by the sensor 
8        Read Temp(c)  current  temperature value 
9      Read Tagid(p) current tag ID scanned by a reader      

10       Set Tt  time sending tag  id 
11       Read Tr current time receive tag id by the reader     
12      If  (Tr – Tt > &T) 
13           Set St = 0 //Remove packet 
14      Else if (Temp(c) >  Max_R|&&Temp(c) < Min_R) 
15            Set St = 0 //Remove packet 
16             If   (Temp(c) == Temp(p) &&  Tag_id(c) == Tag_id(p)    
17                  Set St = 0 //Remove packet 
18            Else  
19                   Set  St = 1  //Send packet to cluster head 
20     End  if  

21 End Algorithm # 

 

The packet evaluation Algorithm (2) at the cluster head level is described in the following pseudocode. 

Algorithm (2) Evaluation at CH 

1 𝐈𝐧𝐩𝐮𝐭:   
2     Temp(c), Tag_id(c), ST, AT, D,  EC_Thr 
3 𝐎𝐮𝐭𝐩𝐮𝐭:  
4       St either 1 or 0 //Send  or  packet to BS or  remove packet 
5 𝐁𝐞𝐠𝐢𝐧:  
6       The cluster head receives a packet  
7       Read    Temp(c) and  Tag_id(c)  
8       Set  ST    Packet send Time 
9      Read  AT   Packet Arrival Time 
10      If  (AT –  ST >  D) 
11               Set St = 0 //Remove packet 
12      Else 
13               Compute Energy Consumption(  EC_N_CH) as Eq. (3.7) 

14              If  (EC_N_CH ~ =  EC_Thr) //EC_Thr energy consumption at initial stage 

15                    Set St = 0 //Remove packet 
16             Else 
17                     Set St = 1  //Send packet to BS 
18     End if 

19 End Algorithm # 

 

When the CH receives the packet, it will check the energy consumed in transmitting the packet from the node 

to itself (𝐸𝐶_𝑁_𝐶𝐻). If the energy consumed in sending a packet is not equal to the energy consumed (𝐸𝐶_𝑇ℎ𝑟) in 

the initial stage, it is considered abnormal, and the packet will be discarded. However, it is considered normal if 

the energy consumption is equal (𝐸𝐶_𝑇ℎ𝑟). Thus, the CH then checks the next metric, which is the delay in the 

transmission from the node to CH. If the delay exceeds the threshold (𝐷), the packet is rejected and dropped. 

Otherwise, the packet is accepted, and the status of the packet is trusted. Hence, the CH forwards the packet to the 

BS. The packet evaluation Algorithm (3) at the BS level is described in the following pseudocode. 
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Algorithm (3) Evaluation at BS: 

1 𝐈𝐧𝐩𝐮𝐭:  
2     Temp(c), Tag_id(c), obj_id, ST_CH , AT_BS ,    DThr,    EC_I   Tag_id_S 
3 𝐎𝐮𝐭𝐩𝐮𝐭:  
4       St either 1 or 0 //Send packet to BS  or remove packet. 
5 𝐁𝐞𝐠𝐢𝐧:    
6       BS receive a packet from the Cluster Head 
7       Read    Temp(c) and  Tag_id(c)  
8       Set  𝑆𝑇𝐶𝐻   Packet to send − time   
9       Read  AT_BS  Packet Arrival Time   
10    If  (AT_BS   –  ST_CH   >   DThr) 
11                 Set St = 0 //Remove packet 
12     Else  
13                   Compute  energy consumpt𝑖𝑜𝑛 𝐸𝐶_ 𝐶𝐻_𝐵𝑆  as Eq(3.11) 

14                   If  (EC_CH_BS~ =  EC_I) //  EC_I energy consumption at initial stage 
15                          Set  St = 0 //Remove packet 
16                    Else  

17                         Set   X =  Tag_id(c)  //  Tag_ID that is received from cluster head 
18                          Read      obj_id (Object Id) 
19                          Read   Tag _id_s  from the server where the object id in the server equals the received object id. 

20                          Set  X ∗ = (Tag_id_S  ) //tag _id_s that is saved in the BS 𝑟𝑒𝑔𝑖𝑠𝑡𝑟𝑎𝑡𝑖𝑜𝑛 
21                     If (X  ~ =  X ∗ ) 
22                                 Set St = 0 //Remove packet 
23                      Else 
24                                 Set St = 1  //Send packet cloud  
25        End if  

26 End Algorithm # 

Once the BS receives the packet, it checks the 𝐸𝐶_𝑁_𝐶𝐻. If the energy consumption of sending a packet from 

CH is not equal to the energy consumed in the initial stage (𝐸𝐶_𝐼), the packet will be discarded. Otherwise, if the 

energy consumption is equal to 𝐸𝐶_𝐼, it is considered normal, and the BS will check the next metric, which is delay 

(𝐷𝑒𝑙𝑎𝑦_𝐶𝐻_𝐵𝑆) in transmitting the packet from the CH to itself. If the delay exceeds the threshold (𝐷𝑇ℎ𝑟) of 0.5s 

[29], the packet is unreliable and will be dropped. Otherwise, the packet will be authentic, and the BS will check 

the next metric, which is 𝑇𝑎𝑔 𝑉𝑎𝑙𝑖𝑑𝑎𝑡ion (𝑇𝑉 ). The BS checks the RFID tag ID scanned by the reader received from 

the CH (X) against the tag ID stored in its database during the registration phase (*X). If they are the same, the tag 

authentication is accepted, and the packet is considered trusted and sent to the cloud. Otherwise, the tag will be 

rejected and will be dropped. Then, it will not be transmitted to the cloud because it is considered an untrusted 

packet. Table II describes the notations used in Figure 5.  

IV. RESULT AND ANALYSIS 

In this paper, we conducted our simulation on MATLAB, and multiple tests have been performed to validate 

the proposed model regarding the number of detected untrusted packets, energy efficiency, and accuracy. 

Simulation results show that the proposed model can detect untrusted packets and has higher detection accuracy 

than other models. In addition, the proposed model consumes less energy and saves more than existing models. 

Six scenarios were conducted to evaluate the performance of the LTEM. In the first scenario, LTEM is compared 

to the original model, which transmits packets directly to the cloud without detecting untrusted packets. In the 

second scenario, LTEM is evaluated based on the node, CH, or BS packet evaluation level in the third scenario. 

LTEM is compared with other models (DAME, EWMN, TMDF, and DTEM) according to the factors used to 

evaluate the packet. To evaluate the accuracy, the fourth scenario is applied in one node with different samples 

(500, 1000, 1500, and 2000 packets) injected with varying percentages of error. The fifth scenario is conducted in 

one cluster, with different nodes (N1, N2, N3, N4, N5, and N6) injected with different error percentages. The sixth 

scenario was carried out in all clusters, including all the nodes in the LTEM, which were injected with different 

percentages of errors. Table 2 shows the experimental parameters of the LTEM. Table 3 shows the scenario setup 

for the evaluation of LTEM. 
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Table 2. Parameters to develop LTEM 

Parameters Value 

Number of Nodes 30 nodes 

Node Distribute randomly 

Number of rounds different round is used 

Simulation Area 100m^2 x100m^2 

Initial energy of node 0.5 j 

Energy for Data Aggregation (EDA) 5nj/bit/signal   

Transmitter Electronics and Receiver Electronics 

(Eelec) 

50 nj/bit   

Transmit Amplifier in free space (ξfs) 100 pi/bit/m2   

Transmit Amplifier in free space (ξmp) 0.0013 pi/bit/m2   

Message bits send per packet per node (L) 4000 bit   

DT, 𝐷𝑡ℎ𝑟 0.5s [31] 
&𝑇   100 MS  

Internet Technology Wi-Fi 

 

   Table 3. Scenarios setup used to evaluate LTEM 

Scenario Sample of size packets 
Number of 

Nodes 
Performance metrics Error injected 

Scenario 1 
250, 230, 200, 190, 

173, 150, and 145 
7 nodes 

Number of detected untrusted 

packets. 

Energy Consumption. 

Residual Energy 

30% 

Scenario 2 100 packets 1 node 

Number of detected untrusted 

packets. 

Energy Consumption. 

Residual Energy 

30% 

Scenario 3 100 packets 1 node 

Number of detected untrusted 

packets. 

Energy Consumption. 

Residual Energy 

30% 

Scenario 4 
500, 1000, 1500, 2000 

packets 
1 node Model accuracy 10% and 30% 

Scenario 5 100 packets 6 nodes Model accuracy 
10%, 20% and 

30% 

Scenario 6 100 packets 30 nodes Model accuracy 
10%, 15%, 20%, 

25%, and 30% 

1. FIRST SCENARIO 

Before adding the trust evaluation metric (BATEM), the model is compared to the proposed model LTEM. 

BATEM directly sends data packets from nodes to CH, from CH to BS, and then to the cloud without detecting 

untrusted data packets. The cloud then receives all trusted and untrusted packets. LTEM, on the other hand, 

evaluates packets at each level, node, CH, and BS, and only sends trusted packets to the cloud, while untrusted 

packets are discarded before being sent to the cloud. Simulation results show that BATEM sends approximately 

95% of all trusted and untrusted packets to the cloud per node. Although LTEM transmits fewer packets than 

BATEM, each node transmits about 70% of the packets, as shown in Figure 6. As a result, 30% of packets avoid 

transmission to the cloud because they are not trusted and are dropped. Because LTEM detects untrusted packets 

and drops them before transmission, fewer packets are transmitted, reducing energy consumption and extending 

the system's life.  
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FIGURE 6. Packet transmission rate per node in BATEM and LTEM 

Figure 7 shows the total energy consumption of all nodes in LTEM is 2.800J less than the 3.800J consumed by 

the BATEM model. Therefore, LTEM saves approximately 1.200J of energy compared to BATEM, which only saves 

0.200J, as shown in Figure 8. 

 
FIGURE 7. Total energy consumed by BATEM 

and LTEM 

 
FIGURE 8. Total residual energy for BATEM and 

LTEM 

2. SECOND SCENARIO 

The LTEM is evaluated based on different BS, Cluster Head, and node levels in this scenario. The packet 

evaluation level impacts the node's energy consumption, as mentioned in [32]. To demonstrate that the LTEM first 

evaluated the data packet at BS (Eval_BS), then we evaluated the packet at the BS and CH  (Eval _CH_ BS). Lastly, 

we evaluated the packets at node, CH, and BS (Eval_N_CH_BS). The simulation results show each model has an 

overall detection rate of 30% for untrusted packets, which is the same as that of injection errors, as shown in Figure 

9. However, the difference was in energy consumption. The LTEM (Eval_N_CH_BS) consumes less energy 
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compared to other models, about 0.59J, while (Eval_CH_BS) and (Eval_BS) consumed about 0.63J and 0.71J, 

respectively, as shown in Figure 10.  

 

 

FIGURE 9. Percentage of untrusted packets detected by the LTEM at different levels of nodes, CH and BS 

 

 
FIGURE 10. Total energy consumption of the LTEM to evaluate packets at different levels of nodes, CH and BS 

 

This is because the LTEM (Eval_N_CH_BS) detects untrusted packets at the node level from the very beginning 

at the node level and avoids transmitting them to CH, which leads to reduced energy consumption. Therefore, the 

LTEM (Eval_N_CH_BS) saves more energy compared to other models by about 3.40J, while Eval_CH_BS and 

Eval_BS models consumed about 3.36J and 3.28J, respectively, as shown in Figure 11. Based on the above, Table 4 

shows the results of the LTEM at different levels of nodes CH and BS. 

https://doi.org/10.48161/qaj.v4n2a537


QUBAHAN ACADEMIC JOURNAL 

VOL. 4, NO. 2, June 2024 

https://doi.org/10.48161/qaj.v4n2a537 

 
490 

VOLUME 4, No 2, 2024 

 

 

 
FIGURE 11. Residual energy of the LTEM at different levels of nodes, CH and BS 

 

  Table 4. Result of the LTEM at different levels of nodes CH and BS 

Evaluate Models Eval_ BS Eval _CH _BS Eval _N _CH _BS 

Detect_at _N 0 0 62 

Detect_at_CH 0 97 35 

Detect_at_BS 150 53 53 

Detect overall untrusted packets 150 150 150 

Rate Detection 1 1 1 

Energy Consuming 0.71849 0.63069 0.59846 

Rate of Energy Consuming (%) 0.17962 0.15767 0.14961 

Residual Energy 3.2815 3.3693 3.4015 

Rate of Residual Energy (%) 0.82038 0.84233 0.85039 

 

3. THIRD SCENARIO 

Three main factors need to be considered in the evaluation process to perform a comprehensive evaluation: 

data packet, node behavior, and energy factor. Previous research [10-22] found that most of the existing trust 

evaluation models mainly focus on node behavior without adequately considering the trustworthiness of the data 

packet. However, the data evaluated is very important to ensure the data packet is trusted. Therefore, a trust model 

is needed to assess both node behavior and data packet simultaneously. In addition, most trust models do not 

consider energy in the evaluation processes shown in Table 5. Hence; the LTEM considers three factors: data 

packet, node behavior, and energy factor. The performance of the LTEM is compared with different models to 

evaluate its performance. The first model is the Data Aggregation Techniques of WSN using the External Mobile 

Elements (DAME) [33], the second model is the Trust-Evaluation Model with Entropy-Based Weight Assignment 

for Malicious Node Detection in Wireless Sensor Networks (EWMN) [25], the third model is Trust Model of 

Wireless Sensor Networks and Its Application in Data Fusion (TMDF) [22], and the last model is An Efficient 

Dynamic Trust-Evaluation Model for Wireless Sensor Networks (DTEM) [23]. Each of these models evaluated the 

packet and established the trust value based on some factors related to either the data packet, node behavior, or 

energy factor. As presented in Table 5, the evaluation in DAME is based on a data packet, while (EWMN) is based 

on node behavior. This model (TMDF) considers both data packet and node behavior but does not consider the 

energy factor. On the other hand, DTEM is evaluated based on node behavior and energy factors without 

considering the data packet. Hence, the LTEM considers data packets, node behavior, and energy factors. 
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  Table 5. Comparison between the LTEM and other models 

Models Data of Node Behavior of Node Energy Factor 

DAME ✓  × × 

EWMN × ✓  × 

TMDF ✓  ✓  × 

DTEM × ✓  ✓  

LTEM ✓  ✓  ✓  

 

The LTEM is evaluated with other models regarding untrusted-packet detection rate, energy consumption, and 

node-saving energy. The packets of 500 are selected from the dataset as samples, and 30% of them are randomly 

injected with different types of errors. The simulation results are shown in Figure 12. This shows that the LTEM 

has the highest detection rate (100%), while the detection rates of other models, DAME, EWMN, TMDF, and 

DTEM, are 42%, 31%, 73%, and 58% respectively. The reason is that during packet evaluation, the LTEM considers 

all factors: data packet, node behavior, and energy, while other models only consider one or two of them.  

 

 
FIGURE 12. Detection rate of untrusted packets for the LTEM and other models DAME, EWMN, TMDF, and 

DTEM 

 

Since most of the energy is consumed during packet transmission, about 80%, as mentioned in [10, 34, 35], then 

when the number of detected untrusted packets increases, the number of transmitted packets decreases. As a 

result, energy consumption decreases. Then, the LTEM detected untrusted packets the most. It consumed less 

energy, about 0.59J, compared to other models, namely DAME, EWMN, TMDF, and DTEM, which consumed 

about 0.65J, 0.67J, 0.61J, and 0.66J respectively, as shown in Figure 13. As a result, the energy saving rate for the 

LTEM is 3.40J higher than other models. In contrast, DAME, EWMN, TMDF, and DTEM models are 3.34J, 3.32J, 

3.38J, and 3.33J, respectively, as illustrated in Figure 14. In general, the LTEM showed the best performance 

compared to other models in terms of untrusted packet detection, energy consumption, and saving energy. 
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FIGURE 13. Total energy consumption of the LTEM and other models (unit in J) 

 

 
FIGURE 14. Residual energy of the LTEM and other models (unit in J) 

4. FOURTH SCENARIO 

Different cases are conducted to evaluate the accuracy of the detected untrusted packets of the LTEM and to 

test whether or not the LTEM can detect all untrusted packets. It was applied in one node with different samples 

(500, 1000, 1500, and 2000 packets) injected with varying error percentages to evaluate the accuracy. Table 6 

summarizes the accuracy of the LTEMs in Case 1, Case 2, Case 3, Case 4, and Case 5. From the Table 6, the 

untrusted packets are detected in the same way as those injected in each case, which means the accuracy rate is 

100%, except for Case 5. In this case, the accuracy rate is 99% due to the increase in the percentage of injected errors, 

which increases to 30%, as mentioned in [36]; when the percentage of error increases, the accuracy of detecting the 

malicious node decreases. However, even with the increased error percentage, the average accuracy of the LTEM 

is still as high as 99%. This result shows that the performance of the LTEM is outstanding. 
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  Table 6. The average accuracy of the LTEM for several samples  

Case Sample Injected Errors Actual Detected Error Accuracy 

Case 1 500 packets (10%) /50 50 100% 

Case 2 1000 packets (10%) /100 100 100% 

Case 3 1500 packets (10%) /150 150 100% 

Case 4 2000 packets (10%) /200 200 100% 

Case 5 2000 packets (30%) /600 599 99.8% 

Avg    499.8/5=99% 

 

5. FIFTH SCENARIO 

In the fourth scenario, several samples were selected to evaluate the accuracy of the LTEM. However, in this 

scenario, several nodes (N1, N2, N3, N4, N5, and N6) were selected to evaluate the accuracy of the LTEM. The 

sample size per node is 100 packets injected with different error percentages. N1 and N2 are injected with 10% 

untrusted packets, N2 and N3 with 20% untrusted packets, and N5 and N6 with 30% untrusted packets). It can be 

seen from Table 7 the number of untrusted packets detected is the same as that of injected errors. 10% are detected 

by N1 and N2, 20% are detected by N3 and N4, and 30% are detected by N5 and N6. Therefore, the accuracy of 

the LTEM, in this scenario, is 100%.  

Table 7. LTEM untrusted packet detection rates in N1 to N6 

Node_ ID Rate Detected 

N1 10% 

N2 10% 

N3 20% 

N4 20% 

N5 30% 

N6 30% 

Table 8 summarizes the average accuracy of the LTEM for several nodes. It is clear from the Table 8 that the 

nodes N1, N2, N3, N4, N5, and N6 all injected errors. Therefore, the average accuracy of the LTEM, in this case, 

is 100%. 

Table 8. The average accuracy of the LTEM for several nodes 

 

Sample Node ID Percentage % of injected errors Actual Detected Error Accuracy 

100 packets for each node 

N1 10% errors (10 packets) 10 100% 

N2 10% errors (10 packets) 10 100% 

N3 20% errors (20 packets) 20 100% 

N4 20% errors (20 packets) 20 100% 

N5 30% errors (30 packets) 30 100% 

N6 30% errors (30 packets) 30 100% 

Avg    600/6=100% 

6. SIXTH SCENARIO 

The LTEM is applied to one cluster in the fifth scenario to evaluate its accuracy. However, in this scenario, all 

nodes in the network, including Cluster 1, Cluster 2, Cluster 3, Cluster 4, and Cluster 5, are used to evaluate the 

accuracy of the LTEM. Table 9  shows the average accuracy of the LTEM for each cluster injected with different 
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percentages of errors: 10%, 15%, 20%, 25%, and 30% for Cluster 1, Cluster 2, Cluster 3, Cluster 4, and Cluster 5 

respectively. The detection rate of the untrusted packets in Cluster 1, Cluster 2, Cluster 3, and Cluster 5 is the same 

as that of the injected rate. However, Cluster 4 was injected with a 25% error, and the actual detection was 24%. 

Therefore, the average accuracy of applying the LTEM to each cluster is 99%. Figure 15 shows the detection rate 

of the untrusted packets for Cluster 1, Cluster 2, Cluster 3, Cluster 4, and Cluster 5. 

 
FIGURE 15. Detection rate of untrusted packets in each cluster 

 

Table 9. Average accuracy of the LTEM for each cluster injected with different percentages of error 

nodes 

Sample Cluster Injected Errors Actual Detected Error Accuracy 

100 packets for each node 

Cluster 1 10% errors 10% 100% 

Cluster 2 15% errors 15% 100% 

Cluster 3 20% errors 20% 100% 

Cluster 4 25% errors 24.8% 99% 

Cluster 5 30% errors 30% 100% 

Avg    499/5=99.8% 

 

7. COMPUTE CONFIDENCE LEVEL 

Increasing the errors in the node indicates that the node may have faults. Therefore, the administrator should 

be careful about this node and take the necessary action to avoid unexpected errors, such as isolating or changing 

the faulty node. The LTEM evaluated the node based on the trust value to help the administrator know the node's 

status. Therefore, a cluster with multiple nodes (N1, N2, N3, N4, N5, N6, and N7) is selected to show the trust 

value for each node. The number of samples for each node is 100 packets, injected with different percentages of 

errors. Equation (1) calculates the nodes' trust value/confidence level [10]. The node has three statuses: either 

normal when (𝑇𝑉 ==  1), suspected when (1 >  𝑇𝑉 >=  0.5), or abnormal when (𝑇𝑉 <  0.5) [10]. Figure 16 shows 

the trust value for each node, while Table 10 presents the status of each node.  
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Table 10. Status of nodes 1 to 7 

Node_ID Trust_Value Status 

N1 0.8 Suspected 

N2 0.9 Suspected 

N3 0.7 Suspected 

N4 0.8 Suspected 

N5 0.45 Abnormal 

N6 0.55 Suspected 

N7 1 Normal 

 

As seen in Figure 16, the trust value for N7 = 1. Therefore, the status of this node is Normal. While N1, N2, N3, 

N4, and N6 have trust values between 1 and 0.5, the status for these nodes is suspected. Since the trust value for 

N5 is less than 0.5, the status of this node is abnormal. So, the administrator should care about this node and take 

necessary action, such as isolating or changing the abnormal node to avoid unexpected errors in the IoT 

application. 

 

FIGURE 16. Trust values for node1 to node7 

 

The Trust Value or Confidence Level is represented by Trust Value/ Confidence Level = 1 − E\E + Cquantifies 

the trustworthiness of a system based on the ratio of trusted to untrusted packets, where E is the number of 

untrusted packets and C is the number of trusted packets. This measure indicates a high trust value, close to 1, 

when untrusted packets are minimal compared to trusted ones, implying a reliable and secure system. Conversely, 

a low trust value, near 0, arises when untrusted packets are prevalent, signaling potential reliability issues. The 

formula subtracts the fraction of untrusted packets from 1 to yield the proportion of trusted packets, thereby 

providing a clear and straightforward metric for assessing the confidence level in various applications, such as 

network security, where the integrity of data transmission is critical. 

V. CONCLUSION 

IoT technology involves various tasks that achieve smart service goals, enabling devices to interact with the 

physical world. However, the continuous advancement of technology has led to more attack mechanisms that 

exploit the heterogeneity of IoT, raising trust issues. Trust assessment models are critical for identifying 

untrustworthy behaviors and objects and reducing uncertainty and potential risks. Most trust models focus on 

node behavior and ignore packet aspects that may affect the trustworthiness of an application. LTEM combines 

packet and node behavior evaluation to enhance application reliability. However, this approach affects energy 

consumption because IoT nodes have limited battery life. LTEM considers energy factors to reduce energy usage. 

The study employs eight trust metrics to determine the trustworthiness of a packet, covering packet, node 
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behavior, and energy factors. This comprehensive evaluation can detect many untrusted packets, thereby reducing 

energy consumption. LTEM evaluation occurs at three levels: node, cluster head (CH), and base station (BS). This 

multi-level evaluation enhances application reliability and reduces energy consumption by dropping untrusted 

packets before transmission to the CH and BS. Simulation results show that LTEM outperforms other models in 

detecting untrusted packets while consuming less energy. Its accuracy is exceptionally high, with an average 

accuracy of 99%. Future work aims to enhance the model using artificial intelligence (AI) and deep learning 

techniques. 

 

`Notation  Description 

Temp Temperature Value Read by Sensor 

Max_R Maximum Range of the Temperature Sensor 

Min_R Minimum Range of the Temperature Sensor 

Tr Current Time of Receiving the Packet by the Reader 

Tt Current Time of Sending Tag ID   

&T Time Threshold 

Temp(C) Current Temperature Value Read by Sensor 

Temp(p) Previous Temperature Value Read by Sensor 

Tag_Id(c) Current Tag ID Scan by the Reader 

Tag_Id(p) Previous Tag ID Scan by the Reader 

D_N_CH Delay Between Node and Cluster Head 

D_ CH_BS Delay Between Cluster Head and BS 

D_Thr Delay Threshold 

X Tag ID that is Scanned by the Reader 

X* Tag ID that is Saved in the BS at the Registration Phase 

 

Funding statement 

       This research was supported by Universiti Tun Hussein Onn Malaysia (UTHM) through Tier 1 (vot Q413), 

and Ministry of Higher Education of Malaysia (MOHE) through Fundamental Research Grant Scheme (FRGS) 

under Grant Vot K216 and Reference Code: FRGS/1/2019/ICT04/UTHM/03/2. 

Author contribution 

Somya, Hazalila, and Nayef Alduais contributed to the initial drafting of the paper. Hazalila and Nayef also 

reviewed and edited the manuscript. Noor Zuraidin and Salama provided critical review and feedback on the 

paper. 

Conflict of Interest 

    The authors declare no conflict of interest. 

Acknowledgements  

This research was supported by Universiti Tun Hussein Onn Malaysia (UTHM) through Tier 1 (vot Q413), and 

Ministry of Higher Education of Malaysia (MOHE) through Fundamental Research Grant Scheme (FRGS) under 

Grant Vot K216 and Reference Code: FRGS/1/2019/ICT04/UTHM/03/2. 

REFERENCES 
1. Alghofaili, Y., & Rassam, M. A. (2023). A Dynamic Trust-Related Attack Detection Model for IoT Devices and Services Based on the 

Deep Long Short-Term Memory Technique. Sensors, 23(8), 3814. 
2. Zheng, G., Gong, B., & Zhang, Y. (2021). Dynamic network security mechanism based on trust management in wireless sensor 

networks. Wireless Communications and Mobile Computing, 2021(1), 6667100. 
3. Alghofaili, Y., & Rassam, M. A. (2022). A trust management model for IoT devices and services based on the multi-criteria decision-

making approach and deep long short-term memory technique. Sensors, 22(2), 634. 

https://doi.org/10.48161/qaj.v4n2a537


QUBAHAN ACADEMIC JOURNAL 

VOL. 4, NO. 2, June 2024 

https://doi.org/10.48161/qaj.v4n2a537 

 
497 

VOLUME 4, No 2, 2024 

 

 

4. Lakhan, A., Mohammed, M. A., Zebari, D. A., Abdulkareem, K. H., Deveci, M., Marhoon, H. A., ... & Martinek, R. (2024). Augmented 

iot cooperative vehicular framework based on distributed deep blockchain networks. IEEE Internet of Things Journal. 

5. Talbi, S., & Bouabdallah, A. (2020). Interest-based trust management scheme for social internet of things. Journal of Ambient Intelligence 
and Humanized Computing, 11(3), 1129-1140. 

6. Elkhodr, M., & Alsinglawi, B. (2020). Data provenance and trust establishment in the Internet of Things. Security and Privacy, 3(3), e99. 
7. Abdulrahman, S. M., Hani, A. A., Zeebaree, S. R., Asaad, R. R., Majeed, D. A., Sallow, A. B., & Ahmad, H. B. (2024). INTELLIGENT 

HOME IOT DEVICES: AN EXPLORATION OF MACHINE LEARNING-BASED NETWORKED TRAFFIC INVESTIGATION. Jurnal 
Ilmiah Ilmu Terapan Universitas Jambi, 8(1), 1-10. 

8. Abou-Nassar, E. M., Iliyasu, A. M., El-Kafrawy, P. M., Song, O. Y., Bashir, A. K., & Abd El-Latif, A. A. (2020). DITrust chain: towards 
blockchain-based trust models for sustainable healthcare IoT systems. IEEE access, 8, 111223-111238. 

9. Ahmed, A. I. A., Ab Hamid, S. H., Gani, A., & Khan, M. K. (2019). Trust and reputation for Internet of Things: Fundamentals, taxonomy, 

and open research challenges. Journal of Network and Computer Applications, 145, 102409. 
10. Alduais, N. A. M., Abdullah, J., & Jamil, A. (2019). RDCM: An efficient real-time data collection model for IoT/WSN edge with 

multivariate sensors. IEEE Access, 7, 89063-89082. 
11. Mohammed, Z. K., Mohammed, M. A., Abdulkareem, K. H., Zebari, D. A., Lakhan, A., Marhoon, H. A., ... & Martinek, R. (2024). A 

metaverse framework for IoT-based remote patient monitoring and virtual consultations using AES-256 encryption. Applied Soft 
Computing, 158, 111588. 

12. Rizwanullah, M., Singh, S., Kumar, R., Alrayes, F. S., Alharbi, A., Alnfiai, M. M., ... & Agrawal, A. (2022). Development of a model for 

trust management in the social internet of things. Electronics, 12(1), 41. 
13. Chen, R., & Guo, J. (2014, May). Dynamic hierarchical trust management of mobile groups and its application to misbehaving node 

detection. In 2014 IEEE 28th international conference on advanced information networking and applications (pp. 49-56). IEEE. 
14. Awan, K. A., Din, I. U., Zareei, M., Talha, M., Guizani, M., & Jadoon, S. U. (2019). Holitrust-a holistic cross-domain trust management 

mechanism for service-centric Internet of Things. Ieee Access, 7, 52191-52201. 
15. Lingda, K., Feng, Z., Yingjie, Z., Nan, Q., Dashuai, L., & Shaotang, C. (2021, February). Evaluation method of trust degree of distribution 

IoT terminal equipment based on information entropy. In Journal of Physics: Conference Series (Vol. 1754, No. 1, p. 012108). IOP Publishing. 
16. Yu, Y., Jia, Z., Tao, W., Xue, B., & Lee, C. (2017). An efficient trust evaluation scheme for node behavior detection in the internet of 

things. Wireless Personal Communications, 93, 571-587. 
17. Zhang, W., Zhu, S., Tang, J., & Xiong, N. (2018). A novel trust management scheme based on Dempster–Shafer evidence theory for 

malicious nodes detection in wireless sensor networks. The Journal of Supercomputing, 74, 1779-1801. 

18. Ahmed, A., Bakar, K. A., Channa, M. I., Haseeb, K., & Khan, A. W. (2015). TERP: A trust and energy aware routing protocol for wireless 
sensor network. IEEE Sensors Journal, 15(12), 6962-6972. 

19. Mon, S. F. A., Winster, S. G., & Ramesh, R. (2022). Trust model for IoT using cluster analysis: A centralized approach. Wireless Personal 
Communications, 127(1), 715-736. 

20. Kowshalya, A. M., & Valarmathi, M. L. (2017). Trust management in the social internet of things. Wireless Personal Communications, 96, 
2681-2691. 

21. Han, G., Jiang, J., Shu, L., Niu, J., & Chao, H. C. (2014). Management and applications of trust in Wireless Sensor Networks: A 

survey. Journal of Computer and System Sciences, 80(3), 602-617. 
22. Chen, Z., Tian, L., & Lin, C. (2017). Trust model of wireless sensor networks and its application in data fusion. Sensors, 17(4), 703. 

23. Ye, Z., Wen, T., Liu, Z., Song, X., & Fu, C. (2017). An efficient dynamic trust evaluation model for wireless sensor networks. Journal of 
Sensors, 2017(1), 7864671. 

24. Jiang, J., Han, G., Wang, F., Shu, L., & Guizani, M. (2014). An efficient distributed trust model for wireless sensor networks. IEEE 
transactions on parallel and distributed systems, 26(5), 1228-1237. 

25. Yin, X., & Li, S. (2019). Trust evaluation model with entropy-based weight assignment for malicious node’s detection in wireless sensor 
networks. EURASIP Journal on Wireless Communications and Networking, 2019, 1-10. 

26. MOhammed Alduais, N. A. (2019). An efficient real-time data collection model for multivariate sensors in internet of things (IOT) 
applications (Doctoral dissertation, Universiti Tun Hussein Onn Malaysia). 

27. Alqarni, A., Alabdulhafith, M., & Sampalli, S. (2014). A proposed RFID authentication protocol based on two stages of 

authentication. Procedia Computer Science, 37, 503-510. 
28. Mubarak, M. F., & Yahya, S. (2011, March). A critical review on RFID system towards security, trust, and privacy (STP). In 2011 IEEE 

7th International Colloquium on Signal Processing and its Applications (pp. 39-44). IEEE. 
29. Ferrari, P., Flammini, A., Sisinni, E., Rinaldi, S., Brandão, D., & Rocha, M. S. (2018). Delay estimation of industrial IoT applications based 

on messaging protocols. IEEE Transactions on Instrumentation and Measurement, 67(9), 2188-2199. 
30. Feng, R., Che, S., Wang, X., & Yu, N. (2013). Trust management scheme based on DS evidence theory for wireless sensor 

networks. International Journal of Distributed Sensor Networks, 9(6), 948641. 
31. Ferrari, P., Flammini, A., Sisinni, E., Rinaldi, S., Brandão, D., & Rocha, M. S. (2018). Delay estimation of industrial IoT applications based 

on messaging protocols. IEEE Transactions on Instrumentation and Measurement, 67(9), 2188-2199. 

32. Feng, R., Xu, X., Zhou, X., & Wan, J. (2011). A trust evaluation algorithm for wireless sensor networks based on node behaviors and ds 
evidence theory. Sensors, 11(2), 1345-1360. 

33. Ali, B. A., Abdulsalam, H. M., & AlGhemlas, A. (2018). Trust based scheme for IoT enabled wireless sensor networks. Wireless Personal 
Communications, 99, 1061-1080. 

34. Bouguera, T., Diouris, J. F., Chaillout, J. J., Jaouadi, R., & Andrieux, G. (2018). Energy consumption model for sensor nodes based on 
LoRa and LoRaWAN. Sensors, 18(7), 2104. 

35. Alduais, N. A. M., Abdullah, J., Jamil, A., Audah, L., & Alias, R. (2017, March). Sensor node data validation techniques for realtime 
IoT/WSN application. In 2017 14th International Multi-Conference on Systems, Signals & Devices (SSD) (pp. 760-765). IEEE. 

36. Li, X., Zhou, F., & Du, J. (2013). LDTS: A lightweight and dependable trust system for clustered wireless sensor networks. IEEE 

transactions on information forensics and security, 8(6), 924-93

https://doi.org/10.48161/qaj.v4n2a537

