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ABSTRACT: The expression of crop functional traits is influenced by environmental and management 

conditions, which in turn is reflected in genetic diversity. This study employed a data mining approach to 

determine the functional traits of flowers that influence cocoa diversity. A total of 1,140 flowers from 228 

trees were utilized in this study, with 177 representing fine aroma cocoa trees and 51 trees belonging to other 

commercial cultivars. Three attribute evaluators (InfoGainAttributeEval, CorrelationAttributeEval and 

GainRatioAttributeEval), and six algorithms (Naive Bayes, Multinomial Logistic Regression, J48, Random 

Forest, LTM and Simple Logistic) were employed in this study. The findings indicated that the 

GainRatioAttributeEval attribute generator was the most efficacious in discerning the functional trait in 

cocoa diversity flowers. The algorithms Simple Logistic and LMT were the most accurate and specific, while 

Naive Bayes was the most efficient in terms of computational complexity for model building. This research 

provides a comprehensive overview of the use of machine learning to analyze functional traits of flowers 

that most influence cocoa genetic diversity. It also highlights the need to further improve these models by 

integrating additional techniques to increase their efficiency and extend the data mining approach to other 

agricultural sectors. 
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I. INTRODUCTION 
The expression of crop functional traits (morphological, chemical, physiological and phenological properties) is 

influenced by environmental and management conditions, which in turn influence plant yield [1, 2] and plant-soil 
interactions [3]. Among the environmental conditions, changes in temperature and photoperiod have the greatest 
influence on the intraspecific variation of individuals of the same species [1, 3]. In contrast, fertilization is a key 
factor in the management conditions influencing intraspecific variation [3]. Conversely, the use of  artificial selection 
also influences the expression of functional traits in diverse crops versus their wild ancestors [4]. In addition to 
functional traits, it is important to mention genetic differentiation that is caused by the local adaptation of 
geographically separated subpopulations of a species. This has led to the adaptation of individuals with different 
functional traits, including those observed in leaves, flowers, and fruits [5, 6]. These patterns of intraspecific 
diversity in numerous crop and wild species are a reflection of their distribution during the last glaciation period 
[7]. Consequently, it is probable that the impact of these climatic conditions has also influenced the distribution of 
cocoa (Theobroma cacao L.), confining it to a series of geographically and genetically isolated refugia [5]. This has 
resulted in numerous cocoa populations being constrained, thereby generating a high diversity of genetic groups 
[8].  
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The genus Theobroma L. (Malvaceae) has been the subject of numerous studies, which have yielded insights 

into various patterns of reproduction, gene flow and speciation. Additionally, the genus is of economic interest, 

particularly in the context of cultivars of T. cacao species [9]. The floral organization of T. cacao is conserved 

throughout the genus Theobroma yet exhibits a wide range of morphological characteristics as a natural process. 

This is because diverse wild cocoa populations exhibit high floral phenotypic plasticity, a high degree of vegetative 

reproduction, and different pollinators [7, 10, 11]. However, the actual distribution and diversity of cocoa is 

influenced mas for activity human rather than by natural processes [8], as there are higher recombination rates in 

domesticated plants (criollo population) and as a result of this, greater diversification and variability of the flowers 

of various cocoa individuals that adapt to adverse climatic conditions [1, 6]. The rapid diversification and 

distribution of cocoa has become a challenge for the differentiation of individuals from different cocoa populations, 

especially if they have been distributed in geographical areas with different conditions of humidity, precipitation, 

and temperature. These environmental factors influence said diversity, which entails that the farmers who are 

generally open to innovation and new technologies, must adapt to the changing conditions [12]. 

II. LITERATURE REVIEW 

Morphological methods are currently employed to distinguish between distinct cocoa populations, relying 

solely on the functional traits of flowers, leaves, and fruits. However, this necessitates expertise in cultivation, even 

for professionals who collect a substantial amount of data that is challenging to analyze using traditional 

approaches. Currently, this type of analysis is conducted through data mining, which employs a variety of models 

to generate robust and efficient results [13]. Furthermore, techniques of combining several models are employed 

to enhance the accuracy of the results [13]. This approach is exemplified by the CRISP-DM (Cross-Industry 

Standard Process for Data Mining) methodology [14], which was developed to facilitate the utilization of any tool 

and the structuring of any data mining problem [15]. This technique has been employed to direct data mining 

(DM) operations and decision support in business intelligence (BI) by identifying pivotal performance indicators 

(KPIs) for cocoa production and marketing [16]. Furthermore, it is employed to classify the quality of cocoa beans 

during the fermentation process, distinguishing between well-fermented and over-fermented beans with an 

accuracy value of 92.50% [17]. Additionally, it is utilized to analyze opportunities and standardize cocoa 

processing based on data from omics studies conducted globally [18]. 

Another application of these techniques is their use in predicting sensory qualities of cocoa using optimal 

models of the Simple Linear Regression data mining algorithm from WEKA (Waikato Environment for Knowledge 

Analysis). The application of machine learning technologies has enabled the prediction of cocoa sensory quality 

with minimal error, in addition to the analysis of (-)-epicatechin and flavonoids [19]. Therefore, it is evident that 

data mining is being used in other sectors, including "e-commerce," to improve decision-making processes or 

generic processes [15]. It is likely that these technological advances will continue to provide comprehensive data 

sets with sophisticated algorithmic solutions that will enable better estimation and decision-making for crops [20], 

including the cultivation of cocoa, to estimate yields and other genetic diversity parameters [21]. 

Therefore, the cocoa improvement program at the Yanayacu Experimental Center, Jaén, is of importance for 

the future development of the cocoa industry in the department of Cajamarca, northeastern Peru. Under this 

context, this innovative study focused on examining functional traits in fine aroma cocoa flowers using data 

mining to determine functional traits in flowers that influence cocoa diversity. There is currently no scientific 

evidence regarding data mining studies on functional traits in cocoa flowers. Consequently, this work provides 

vital information about the collection of fine aroma cocoa, which in turn aids in the development of genetic 

improvement. 

III. MATERIAL AND METHOD 

1. STUDY AREA AND SITE DESCRIPTION 

The study was conducted at the Yanayacu Experimental Center, situated in the province of Jaén, Cajamarca 

(5°40'35.99'' North and 78°46'27.05'' West), within an area of 5 hectares of cocoa plantations. The Experimental 

Center is situated at an altitude of approximately 618 meters above sea level, with temperatures reaching a 
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maximum of 29°C to 33°C during the day and a minimum of 19°C to 23°C at night. The annual precipitation ranges 

from approximately 900 mm to 1200 mm, according to the National Meteorology and Hydrology Service, 

SENAMHI [22]. 

2. ACQUISITION OF THE DATA SET 

A total of 228 cacao trees, approximately 30 years old, were subjected to analysis. The 228 cacao trees were 

found to correspond to 76 accessions. Of these, 59 accessions were identified as fine aroma cacao (Cashew genetic 

group), while the remaining 17 accessions were other cultivable cacao clones (Table S1).  For each cacao accession, 

three trees were sampled, and five flowers per tree were analyzed, resulting in a total of 1,140 flowers. Floral buds 

were selected daily between 8:00 and 9:00 a.m. to avoid loss of turgidity and other morphological characteristics 

until they were transported to the biology laboratory of the National University of Jaén. Each floral structure was 

extracted with tweezers and placed on the slide of a LABOMED LUXEO 6Z binocular stereoscopic microscope, on 

which a fraction of a millimetered leaf was previously placed to be photographed. Image J software 

(https://imagej.net/ij/download.html) was employed to quantify the length of the peduncle (mm), stamens (mm), 

sepal (mm), petal (mm), staminodes (mm), pistil (mm), style (mm), and ligule (mm). Furthermore, the width of 

the sepal and petal of each flower was quantified. To gather further data on the various characteristics of each 

flower, the color of the trichomes, the presence of anthocyanin in the sepal, filament, ligule, ovary, peduncle, 

trichome apex of the ovary, and trichome apex of the peduncle were analyzed (S2 Table). Consequently, the dataset 

comprised 18 attributes and 228 instances. 

3. DATA MINING PROCESS 

The classification algorithms were executed using the open-source data mining tool WEKA 

(https://sourceforge.net/projects/weka/). The analyses were conducted in two groups. The first group consisted of 

samples of fine aroma cocoa (59 Marañón cocoa accessions), while the second group was formed by 17 cultivable 

cocoa clones and the 59 fine aroma cocoa accessions (S1 Table). The study variables were adapted according to the 

model proposed by Altaleb et al. [15], with modifications for the functional traits of cocoa flowers in this study. 

The process was conducted in three phases. The initial phase was designated as variable selection. 

FIGURE 1.  A: Attributes of the dataset for detecting functional traits in fine aroma cocoa flowers. B: Struc-

ture of the proposed data mining process model for the domain of detecting functional traits in cocoa flowers 
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 In this study, the first step was to identify the study variables (attributes). This was followed by data 

preparation and analysis of variable importance. The second phase, data preparation, entailed integrating the 

requisite data from contextual variables. During this phase, data cleansing was conducted to guarantee the 

integrity of subsequent steps and phases. This entailed standardizing the number of flowers per tree and ensuring 

the accurate assignment of attribute codes for each measurement parameter. The third phase was data modeling, 

which involved the use of both descriptive and inferential data. In this phase, the output variable, which was the 

code for each cocoa accession (S1 Table), was defined. The second phase of the process was the selection of 

attributes and the classification of models. In this phase, data preprocessing was conducted. The third and final 

phase was the verification and validation of each classifier, with particular attention paid to those that 

demonstrated the most promising performance (Figure 1). 

4. ELECTION OF ATTRIBUTES 

The selection of attributes influencing the morphological diversity of cocoa flowers was performed using 

attribute evaluators InfoGainAttributeEval, CorrelationAttributeEval, and GainRatioAttributeEval through the Ranker 

search method. For each attribute evaluator, a 10-fold cross-validation was employed.  

A:  InfoGainAttributeEval. InfoGainRatio is the Rapid-I/RapidMiner implementation. Evaluates the worth of an at-

tribute by measuring the information gain with respect to the class. Counts are distributed across other values 

in proportion to their frequency. Otherwise, missing is treated as a separate value. 

B:  CorrelationAttributeEval. Evaluates the worth of an attribute by measuring the correlation (Pearson's) between 

it and the class. Nominal attributes are considered on a value by value basis by treating each value as an 

indicator. An overall correlation for a nominal attribute is arrived at via a weighted average. 

C:  GainRatioAttributeEval. GainRatioAttributeEval is the Weka implementation of this metric. Evaluates the worth 

of an attribute by measuring the gain ratio with respect to the class. Counts are distributed across other values 

in proportion to their frequency. Otherwise, missing is treated as a separate value. 

5. CLASSIFICATION TECHNIQUES 

In order to assess the efficacy of classification techniques, this study has selected six distinct algorithms for 

analysis. The aforementioned techniques have been employed to assess the performance of classifiers in 

identifying the most variable feature detection dataset, which has been compiled from a wide range of cocoa 

clones. The dataset comprises two distinct groups. The first, designated the "marañón group" (fine aroma cocoa), 

encompasses 59 fine aroma cocoa clones (Table S1). The second group comprises all other cultivable clones (17). 

The classifiers included in the study were Naive Bayes, Multinomial Logistic Regression, J48, Random Forest, 

Logistic Model Trees (LTM), and Simple Logistic. A 10-fold cross-validation and Kappa statistic were employed 

for each classifier. 

5.1. Naive Bayes 

The algorithm is probabilistic in nature and is based on Bayes' theorem. The efficacy of the algorithm is 

contingent upon the precise existence of the probability model [23].  

5.2. Multinomial Logistic Regression  

It predicts categorical variables or the probability of participation in a category as a dependent variable based 

on multiple independent variables. Furthermore, the model employs maximum likelihood estimation to assess the 

probability of categorical participation [24]. 

5.3. J48 

Is based on the ID3 algorithm. This process begins with the construction of a tree, with the initial branching 

based on attributes that best divide objects into appropriate classes. This is achieved by searching for rules or 

hypotheses that can be used to classify the objects [25]. 

5.4. Random Forest  

The algorithm is designed to facilitate the systematic organization of voluminous data sets, extending the 

capabilities of classification and regression tree models [26].  

https://doi.org/10.48161/qaj.v4n3a571
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5.5. Logistic Model Trees 

The tool is a simple prediction that addresses regression issues through the collaborative application of linear 

regression and decision tree models [27]. 

5.6. Simple Logistic 

A statistical test is employed to predict a single binary variable based on another variable. It is also used to 

determine the numerical relationship between two of these variables [28]. 

6. CLASSIFIER PERFORMANCE VERIFICATION 

The accuracy and dataset scoring of the classifiers (Naive Bayes, Multinomial Logistic Regression, J48, Random 

Forest, Logistic Model Trees (LTM), and Simple Logistic) were simultaneously tested in WEKA Experimenter to 

validate the results obtained in WEKA Explorer. The dataset pertaining to fine aroma cocoa was exclusively 

considered. The 10-fold cross-validation test mode was executed ten times, with ten repetitions, using both the 

simple mode configuration and the corrected paired T-test mode. This was done to verify the performance of each 

classifier by comparing the accuracy and area under the curve (AUC) results of each classifier. The test employed 

a two-tailed significance level of 0.05. 

IV. RESULTS 

1.  FEATURE SELECTION 

The attribute evaluator GainAttributeEval determined that the attributes of OvA (0.965 ± 0.029; presence of 

anthocyanin in the flower ovary), SepA (0.827 ± 0.058; anthocyanin in the sepal), FilA (0.844 ± 0.006; anthocyanin 

in the peduncle), PetW (0.722 ± 0.011; petal width) and ApedTA (0.673 ± 0.01; anthocyanin at the apex of the 

peduncle) are the most representative for the purpose of determining the intraspecific morphological variability 

of fine aroma cocoa flowers (Table 1). Conversely, the attribute evaluator CorrelationAttributeEval also selected 

five attributes that most significantly influence the morphological variability of fine aroma cocoa flowers. Among 

these attributes, PetW (0.788 ± 0.009; petal width) and OvA (0.75 ± 0.005; anthocyanin in the ovary) stood out. 

ApedTA (0.673 ± 0.0; anthocyanin in the apex of the trichomes), SepA (0.636 ± 0.011; anthocyanin in the sepal) and 

FilA (0.579 ± 0.004; anthocyanin in the flower filament), among these, the PetW attribute exhibited the greatest 

statistical support (0.788 ± 0.009). Finally, the InfoGainAttributeEval evaluator was the least effective in 

determining the characteristic of intraspecific variability in fine cocoa aroma, in most attributes it exhibited a 

statistical support of less than 10% (Table 1).  

 

Table 1. Methods to select the attributes that most influence fine aroma cocoa 

InfoGainAttributeEval GainRatioAttributeEval CorrelationAttributeEval 

Average rank   Attribute Average rank   Attribute Average rank   Attribute 

 0.101 ± 0.001    ApedTA  0.965 ± 0.029      OvA  0.788 ± 0.009  PetW 

 0.096 ± 0.003   PetW  0.827 ± 0.058    SepA  0.75  ± 0.005     OvA 

 0.09  ± 0.001    FilA  0.844 ± 0.006      FilA  0.673 ± 0.01   ApedTA 

 0.085 ± 0.001  SepA  0.722 ± 0.011     PetW  0.636 ± 0.011     SepA 

 0.076 ± 0.001   AovTA  0.673 ± 0.01     ApedTA  0.579 ± 0.004    FilA 

 0.073 ± 0.001   SepL  0.422 ± 0.01    AovTA  0.445 ± 0.007     PedA 

 0.071 ± 0.001  PedA  0.409 ± 0.008    PedA  0.437 ± 0.01     AovTA 

 0.07  ± 0.001    LigL     

 0.067 ± 0.001   StaL     

 0.067 ± 0.001   OvA     

 0.067 ± 0.002   SepW     

 0.067 ± 0.001   PedL     

 0.058 ± 0.002   PetL     

 0.057 ± 0.001  PisL     

 0.055 ± 0.001 StyL     

 0.055 ± 0.001   StamL     
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 0.046 ± 0.001    LigC     

 0.037 ± 0.001    TriC         
 

To provide a more complete overview, Table 2 shows the evaluations of three attribute evaluators: 

InfoGainAttributeEval, GainRatioAttributeEval, and CorrelationAttributeEval. The GainAttributeEval evaluator 

identified five attributes that were considered most representative of those needed to determine the type of cocoa 

clonal varieties. These attributes include OvA (0.773 ± 0.007; anthocyanin in ovary), ApedTA (0.654 ± 0.005; 

anthocyanin in apex of peduncle trichomes), PetW (0.651 ± 0.006; petal width), FilA (0.715 ± 0.103; anthocyanin in 

filament), and SepA (0.618 ± 0.01; anthocyanin in sepal) (Table 1). In contrast, CorrelationAttributeEval identified 

five attributes that showed the greatest precision in representing the phenotypic variability of cacao: PetW (0.773 

± 0.007; petal width), OvA (0.741 ± 0.004; anthocyanin in the ovary), ApedTA (0.657 ± 0.005; anthocyanin in the 

apex of the peduncle trichomes), SepA (0.619 ± 0.01; anthocyanin in the sepal), and FilA (0.578 ± 0.011; anthocyanin 

in the filament). The InfoGainAttributeEval evaluator was the least effective in determining the character of 

intraspecific variability in cacao. The majority of the attributes had a statistical support of less than 9% (Table 2).  

Table 2. Methods to select the attributes that most influence on others cocoa varieties. 

InfoGainAttributeEval GainRatioAttributeEval CorrelationAttributeEval 

Average rank   Attribute Average rank   Attribute Average rank   Attribute 

 0.088 ± 0.001    ApedTA  0.983 ± 0.028     OvA 0.773 ± 0.007 PetW 

 0.079 ± 0.003   PetW  0.654 ± 0.005     ApedTA  0.741 ± 0.004 OvA 

 0.077 ± 0.001    FilA  0.651 ± 0.006    PetW  0.657 ± 0.005  ApedTA 

 0.073 ± 0.001  SepA  0.715 ± 0.103    FilA  0.619 ± 0.01  SepA 

 0.076 ± 0.001   AovTA  0.618 ± 0.01     SepA  0.578 ± 0.011  FilA 

 0.068 ± 0.001   SepL  0.416 ± 0.008    AovTA  0.44  ± 0.009 PedA 

 0.066 ± 0.001  PedA  0.358 ± 0.12    PedA  0.409 ± 0.136 AovTA 

 0.064  ± 0.001    LigL     

 0.064 ± 0.001   StaL     

 0.062 ± 0.001   OvA     

 0.062 ± 0.002   SepW     

 0.058 ± 0.001   PedL     

 0.057 ± 0.002   PetL     

 0.054 ± 0.001  PisL     

 0.055 ± 0.001 StyL     

 0.049 ± 0.001   StamL     

 0.044 ± 0.001    LigC     

 0.03 ± 0.001    TriC         

2. TESTING CLASSIFIER PERFORMANCE USING THE WEKA EXPLORER 

The results obtained from the data set revealed that the algorithms exhibited a degree of inconsistency. As 

illustrated in Table 3, the classification results of all the algorithms tested demonstrated comparable performance, 

with an accuracy, sensitivity, and specificity of 63.57%. Furthermore, Random Forest demonstrated a classification 

performance of 61.65%, while Multinomial Logistic Regression exhibited the lowest classification performance, 

with a score of 52.82% (Table 3). With regard to the computational complexity required to build the classification 

model, Naive Bayes was the most efficient, requiring only 0.0 seconds, followed by J48 with 0.03 seconds. The time 

required to build the models was as follows: Logistic regression (simple) and LMT required 1.01 and 2.58 seconds, 

respectively, while Random Forest required 0.17 seconds. In contrast, multinomial logistic regression showed the 

least efficient performance, requiring 85.56 seconds to build the model. Despite the relatively lengthy run time 

(85.56 seconds) required for classification of the data set, the multinomial logistic regression model demonstrated 

an accuracy of 52.83% above that of the J48 model. 
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Table 3. Weighted average of classifiers for the fine aroma cocoa flower dataset. 

Classifier 
Training 

runtime (s) 

Correctly classified in-

stance % (Accuracy) 
Kappa statistic 

Simple Logistic 1.01 63.57 0.62 

J48 0.03 42.28 0.41 

Random Forest 0.17 61.65 0.6 

Multinomial logistic regres-

sion 
85.56 52.828 0.52 

LMT 2.58 63.57 0.63 

Naive Bayes 0.0 54.47 0.53 

 

The curve margin for all algorithms is depicted in Figure 2, which elucidates the discrepancy between the 

predicted probability for the current class (dependent variable) and the highest predicted probability for the other 

classes (independent variable). Each algorithm exhibits a distinct curve, with the exception of the fine aroma cocoa 

data. This demonstrates that the performance of the algorithms can provide a distinct improvement in 

performance. In this case, the Naive Bayes (Figure 2A), Simple Logistic (Figure 2B), LMT ( 2C), and Random Forest 

(Figure 2D) algorithms present a superior curve with an optimal data distribution, indicating that they are the 

most suitable for use in classification. While the J48 (Figure 2E) and Multinomial Logistic Regression (Figure 2F) 

algorithms present an unusual curve, their performance in data classification is poor. 

 
FIGURE 2.  Margin curve for A: Naïve Bayes, B: Simple Logistic, C: LMT, D: Random Forest, E: J48 and F: Mul-

tinomial Logistic regression for the fine aroma cocoa flower dataset. 

The experiment yielded disparate results among the algorithms, as illustrated in Table 4. The classification 

results of all the algorithms tested revealed that the Simple Logistic and LMT exhibited the highest accuracy, 

sensitivity, and specificity, with an accuracy rate of 57.74%. The Random Forest and Naive Bayes algorithms 

exhibited noteworthy performance, with accuracy rates of 58.33% and 54.47%, respectively. In contrast, the 

multinomial logistic regression demonstrated a performance of 52.67%. Finally, the J48 algorithm exhibited the 

lowest classification performance, with an accuracy of 42.28% (Table 4). In terms of computational complexity to 

build the classification model, the Naive Bayes algorithm proved to be the most efficient, requiring only 0.0 

seconds, followed by J48 with 0.03 seconds, while Random Forest and Simple Logistic required 0.65 and 1.4 

seconds, respectively, while LMT required only 8.83 seconds. In contrast, multinomial logistic regression exhibited 

the least efficient performance, requiring 133.43 seconds to build the model. Notwithstanding the relatively 

lengthy run time, the model demonstrated an accuracy of 52.67%, which was higher than that of J48 (42.28%). 
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Table 4. Weighted average of classifiers for the dataset of fine aroma cocoa clone flowers and other clonal varie-

ties. 

Classifier 
Training 

runtime (s) 

Correctly classified in-

stance % (Accuracy) 
Kappa statistic 

Simple Logistic 1.4 59.74 0.59 

J48 0.03 42.28 0.41 

Random Forest 0.65 58.33 0.57 

Multinomial logistic re-

gression 
133.43 52.67 0.52 

LMT 8.83 59.74 0.59 

Naive Bayes 0.0 54.47 0.53 

 

Figure 3 illustrates the margin of the curve for all algorithms when applied to broader data sets, in this case, 

data pertaining to fine aroma cocoa and other clonal varieties of cocoa. The Naive Bayes (Figure 3A), Simple 

Logistic (Figure 3B), LMT (Figure 3C), and Random Forest (Figure 3D) algorithms present a superior curve with 

an optimal distribution of data, suggesting that they may be employed with data from a single population of cocoa 

(fine aroma cocoa, Figure 2A-D). The J48 (Figure 3E) and Multinomial Logistic Regression (Figure 3F) algorithms 

also present an unusual curve, resulting in poor performance in total data classification. 

 

 

FIGURE 3.  Margin curve for A: Naïve Bayes, B: Simple Logistic, C: LMT, D: Random Forest, E: J48 and F: 

Multinomial Logistic regression, for the dataset of fine aroma cocoa clone flowers and other clonal. 

3. VERIFICATION OF CLASSIFIER PERFORMANCE USING THE WEKA EXPERIMENTER 

The accuracy and area under the curve (AUC) of each algorithm were compared when tested in both WEKA 

Explorer and WEKA Experimenter. The results demonstrated that the Simple Logistic and LTM algorithms 

exhibited the highest accuracy, with 60.45% and 60.50%, respectively. In contrast, the J48 algorithm exhibited the 

lowest accuracy (43.28%) and AUC accuracy (0.84), while the other algorithms exhibited an AUC read accuracy 

above 0.98 (Table 5). 
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Table 5. Accuracy and score of all classifiers tested simultaneously in WEKA Experimenter. 

Classifier Correctly classified instance % (accuracy) AUC 

Native Bayes 52.65 0.98 

Multinomial logistic regression 52.68 0.99 

Simple Logistic 60.45 0.99 

J48 43.28 0.84 

LMT 60.50 0.99 

Random Forest 58.50 1.00 

 

V. DISCUSSION  

It is of paramount importance to ensure that machine learning is further incorporated and expanded in the 

agricultural sector, with particular emphasis on cocoa (T. cacao), an economically important crop that requires 

special attention in terms of its diversity. Machine learning approaches can be used to identify patterns in the 

functional traits of flowers. This machine learning technique would be a fast and practical alternative to resolve 

uncertainties about cocoa varieties. It is not uncommon for farms that have not been renovated for a long period 

to encounter a common problem such as graft-to-rootstock substitution. The misidentification of cocoa trees poses 

a challenge in accurately determining the correct identity and structure of individuals within a population, as gene 

flow plays an important role in diversification [29]. This is especially evident in cultivated cocoa, which exhibits a 

higher level of genetic diversity than wild cocoa. Furthermore, the prevalence of self-pollination and constant 

hybridization makes it challenging to accurately identify cocoa trees [30].  

As the quantity of data continues to expand at an unprecedented rate due to technological advances [31], it has 

become standard practice to categorize it in a way that allows for straightforward analysis using machine learning 

technologies [32]. This study employed an approach to elucidate the variables that influence flower traits in a cocoa 

population. The results indicated that the presence of ovary anthocyanin (OvA) was identified as the most 

influential factor in the diversity of each cocoa individual, either in intra- or interspecific variation. These variations 

in anthocyanin define the color of cocoa fruit and are probably due to the high rate of cross-pollination, where 

several cocoa populations share a close geographical area. Consequently, this study demonstrates the importance 

of employing data mining classification algorithms to predict the morphological traits of flowers that most 

influence cocoa diversity. The Simple Logistic and LMT algorithms were found to be the most effective in 

elucidating such diversity. This implies that each model exhibits a distinct behavior contingent upon the approach 

and type of data. It is evident that this approach can be applied to other agricultural sectors, including crop yield 

prediction, decision-making in the area of fertilization, and pest and disease identification. Furthermore, the 

incorporation of deep learning for analysis or multispectral images can be considered. For instance, machine 

learning approaches are currently being utilized to analyze various characteristics of cocoa crops, including their 

physicochemical properties, quality, fermentation processes, patterns, yield losses, and sales [16,17,19]. 

Additionally, they are employed in the processing of multiple images [17] and the classification of rice varieties 

[33]. However, the degree of precision will depend on the nature of the data and the algorithm employed. These 

approaches are of interest for the future, as they have the potential to improve existing applications and develop 

new ones in a way that minimizes production costs and saves time in certain agricultural activities. Consequently, 

the relationship between the agricultural sector and data science is being consolidated with the aim of analyzing 

data in a simpler and more reliable way.  

Furthermore, although it has been observed that the accuracy of each algorithm will depend on the type of 

attributes and the target sample, it has been demonstrated that algorithms such as Naive Bayes, J48, Multilayer 

Perceptron, and Support Vector Machines (SVM) generate high classification accuracy of seeds and wheat 

genotypes [35]. However, in other parameters such as area, season, and crop yield quality, the performance of the 

algorithm is significantly reduced (76.82%) [36]. Consequently, it is imperative to persist in advancing studies that 

employ diverse models that align more closely with the data, as these machine learning approaches present 

opportunities for farmers in decision-making and crop yield predictions [37]. This machine learning approach will 

be one of the most fundamental tools for the agricultural sector, especially cocoa cultivation, not only to determine 

the existing diversity but also for fertilization, maintenance, prevention, and planning issues. 
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Moreover, it is essential to acknowledge that the generation of extensive, unified data sets may not always be 

feasible in all agricultural contexts [38]. In certain cases, the combination of disparate agricultural scenarios is 

tacitly suggested [39, 40], and the integration of multiple data sets with different conditions is employed before 

training the model to encompass the full spectrum of scenarios and target variability [41], since the use of large 

data sets under the machine learning approach is found to be viable in different conditions and data distributions 

within a specific agricultural domain. However, this task is inherently endless and must be addressed through the 

development of new, innovative, and efficient methods, such as deep learning for analysis [42] and generative 

adversarial networks [43]. Consequently, a machine learning approach to cocoa diversity necessitates the 

sequential training of multiple models on data sets with the objective of achieving more efficient and consistent 

results. This objective will be achieved by proposing a pre-trained agricultural model, which will be developed 

with the selection of data quality in mind, in order to address the challenges associated with the diversity of fine 

aroma cocoa and other diverse agricultural crops. 

Consequently, the results of this study, which were based on functional traits (morphology) in cocoa flowers, 

do not negate the importance of applying them to the agricultural sector. This leads us to propose that future 

studies of this nature should include disease detection, pest detection, leaf area index, yield prediction, and 

grading of cocoa beans. This will facilitate a more comprehensive understanding of the recognition of diverse 

cocoa accessions and cultivars, whether in arable or wild populations, and will also help to reduce production 

costs and improve decision-making. 

VI. CONCLUSION 

 This study has demonstrated the significant impact of using different attribute selections and algorithms to 

identify functional traits in cocoa flowers under agricultural scenarios. The results indicate that the validation and 

testing of models within specific circumstances that accurately reflect the variability found when using different 

algorithms and attribute selection is appropriate. This is exemplified by the use of GainRatioAttributeEval, which 

proved to be more effective in identifying the most prevalent functional trait in cocoa diversity, namely the 

presence of ovary anthocyanin (OvA). Nevertheless, the integration of multiple models was also shown to enhance 

the performance of each algorithm. In terms of algorithms, Simple Logistic and LMT yielded the best accuracy 

results (>60%), although Naive Bayes proved to be the most efficient for model building (0.0 s) in terms of 

computational complexity. It is, however, important to note that the use of large data sets may not always be 

feasible in all agricultural contexts, as not all algorithms produce optimal results. This suggests that future research 

should investigate alternative approaches to enhance models for the agricultural sector, with a particular focus on 

cocoa diversity. In many cases, this can be analyzed for other traits, such as leaves, photographs for deficiency 

analysis, pests and diseases of cocoa. Consequently, the research provides a comprehensive overview of the floral 

traits that most influence cocoa diversity, which underscores the necessity for further refinement of models to 

obtain more robust results. 
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