Utilization of Fuzzy Ontology for the Meaning of Homonymous and Homophones Ambiguous Sentences

Authors

  • I Ketut Gede Darma Putra Information Technology, Udayana University, Indonesia
  • Risky Aswi Ramadhani Informatics Engineering, University of Nnusantara PGRI Kediri, Indonesia

DOI:

https://doi.org/10.48161/qaj.v3n4a176

Keywords:

Confusion Matrix, Fuzzy Ontology, Homophone, Homonymous, Similarity

Abstract

The ambiguous sentences Homonyms and Homophones become a big problem when processed by computers. From these problems, a Novelty was found; the Novelty created a system that was able to recognize ambiguous sentences of Homonyms and Homophones. The process that the system runs for the first time is to test the proximity of the ambiguous sentences entered with the data set; from this process, the ambiguous sentences entered can already be recognized as the meaning of the sentence. The resulting result is how many per cent the level of similarity. Then the results are processed with the fuzzy ontology method. The results of the Fuzzy Ontology are low similarity level, moderate similarity level, and high similarity level. The method used to analyze this research is the confusion matrix, the precision results obtained were 92%, recall was 100%, and accuracy was 96%. In the future, this research can be used to refine translation results in a translation system.

Downloads

Download data is not yet available.

Author Biography

I Ketut Gede Darma Putra, Information Technology, Udayana University, Indonesia

Department of Electrical Engineering and Information Technology, Udayana University Bali, Indonesia

References

. Pramukti I, Strong C, Sitthimongkol Y, Setiawan A, Pandin MGR, Yen C, Lin C, Griffiths MD, Ko N., (2020) Anxiety and Suicidal Thoughts During the COVID-19 Pandemic: Cross-Country Comparative Study Among Indonesian, Taiwanese, and Thai University Students. J Med Internet Res 2020;22(12):e24487. doi: 10.2196/24487PMID: 33296867PMCID: 7772053

. Pramukti I., Strong C., Chen I.H., Yen C.F., Rifai A, Ibrahim K., Pandin M.G.R., Subramaniam H, Griffiths MD, Lin C.Y., Ko N.Y. (2022). The Motors of COVID-19 Vaccination Acceptance Scale (MoVac-COVID19S): Measurement Invariant Evidence for Its Nine-Item Version in Taiwan, Indonesia, and Malaysia. Psychol Res Behav Manag. 2022;15:1617-1625. https://doi.org/10.2147/PRBM.S363757

. Prakoeswa, C. R. S., Endaryanto, A., Martanto, T. W., Wahyuhadi, J., Rochmah, T. N., & Pandin, M. G. R. (2021). Mapping survey of community satisfaction at an academic hospital in Surabaya. Malaysian Journal of Medicine and Health Sciences, 17, 119-122.

. Munir, M., Pandin, M. G. R., & Nor, M. R. M. (2022). Applying Bundo Kanduang Ethics' Principle on Society Facing Pandemic Covid-19 in Indonesia. Res Militaris, 12(2), 882-894.

. Isnaini, R., Pandin, M. G. R., Waloejo, C. S., & Sunyowati, D. (2022). Landslide and Moving Ground Disasters in Sumurup Village, Trenggalek District, East Java, Indonesia: A Case Study. IOP Conference Series: Earth and Environmental Science, 995(1), [012005]. https://doi.org/10.1088/1755-1315/995/1/012005

. Pandin, M. G. R., Waloejo, C. S., Harivelo, R. Z. M., Tahir, W., & Naburi, N. D. (2021). Adaptive Capacity of Health Care System to Tsunami Disaster Impact Reduction in Sundanese Strait, Indonesia. Review of International Geographical Education Online, 11(3), 1216-1226. https://doi.org/10.33403/rigeo.800564

. Waloejo, C. S., Sulistiawan, S. S., Semedi, B. P., Dzakiyah, A. Z., Stella, M. A., Ikhromi, N., Nahyani, Endriani, E., Rahardjo, E., & Pandin, M. G. R. (2022). The Anesthetic Techniques for Earthquake Victims in Indonesia. Open Access Emergency Medicine, 14, 77-84. https://doi.org/10.2147/OAEM.S331344

. Ketut Sudarsana, I., Putu, I., Putra, A. W., Anam, F., Istianti, T., Pandin, M. G. R., Bhawika, G. W., Listiawan, T., Saddhono, K., Abdullah, D., Cathrin, S., Hadjri, M. I., & Laili, R. N. (2019). The Funcion of Technology and Device Laptop For Education Purpose. Society, and Technology Journal of Physics: Conference Series, 1363, 12062. https://doi.org/10.1088/1742-6596/1363/1/012062

. Rahim, R., Kurniasih, N., Daengs Gs, A., Saddhono, K., Riasti, B. K., Rangka, I. B., Kurniawan, D. E., Permana, E. P., Anam, F., Listiawan, T., Rumambo Pandin, M. G., Gumono, G., Yensy, N. A. B., Chandra Wardhana, D. E., Mustika, W. P., & Rindawati, S. (2019). Random and match game for education purposes with model learning technology system architecture. Journal of Physics: Conference Series, 1179(1). https://doi.org/10.1088/1742- 6596/1179/1/012038

. Batiari, N. M. P., Budiharto, B., & Suratmi, T. Anxiety in Adolescents: Risk Factors Based on the Social Ecological Model. (2022). INSAN Jurnal Psikologi dan Kesehatan Mental. 2022; 7(1): 36–53. https://doi.org/10.20473/jpkm.v7i12022.36-53

. A.-H. Fakih, “Learning Through SMS in Saudi EFL Classroom: An Inter-University Study of Learner Perceptions and Achievement of Autonomy,” Theory Pract. Lang. Stud., vol. 12, no. 4, pp. 665–675, 2022, doi: 10.17507/tpls.1204.06.

. U. H. Peters, “Word plays and schizophrenic speech disorders - in what difference exists?,” Confin. Psychiatr., vol. 22, no. 1, pp. 58–64, 1979, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0018746293&partnerID=40&md5=6cd0800ca782b5031bf909401afe760d

. I. Hussain and S. Asghar, “LUCID: Author name disambiguation using graph Structural Clustering,” 2017 Intell. Syst. Conf. IntelliSys 2017, vol. 2018-January, pp. 406–413, Mar. 2018, doi: 10.1109/INTELLISYS.2017.8324326.

. B. C. Cronk, “Phonological, semantic, and repetition priming with homophones,” J. Psycholinguist. Res., vol. 30, no. 4, pp. 365–378, 2001, doi: 10.1023/A:1010403523434.

. R. A. Ramadhani, I. K. G. D. Putra, M. Sudarma, and I. A. D. Giriantari, “Detecting indonesian ambiguous sentences using Boyer-Moore algorithm,” Telkomnika (Telecommunication Comput. Electron. Control., vol. 18, no. 5, pp. 2480–2487, Oct. 2020, doi: 10.12928/TELKOMNIKA.V18I5.14027.

. M. T. Kamowski-Shakibai and H. S. Cairns, “Kindergarten children can be taught to detect lexical ambiguities,” J. Child Lang., vol. 43, no. 2, pp. 442–456, Mar. 2016, doi: 10.1017/S030500091500015X.

. C. Ochs, T. Tian, J. Geller, and S. A. Chun, “Google knows who is famous today - Building an ontology from search engine knowledge and DBpedia,” Proc. - 5th IEEE Int. Conf. Semant. Comput. ICSC 2011, pp. 320–327, 2011, doi: 10.1109/ICSC.2011.50.

. E. C. Dalrymple-Alford, “Lexical decisions with homophones and homonyms,” Curr. Psychol., vol. 3, no. 1, pp. 70–78, 1984, doi: 10.1007/BF02686534.

. Z. Eviatar, N. Binur, and O. Peleg, “Interactions of lexical and conceptual representations: Evidence from EEG,” Brain Lang., vol. 243, 2023, doi: 10.1016/j.bandl.2023.105302.

. A. Bustamin, Indrabayu, I. S. Areni, and N. N. Mokobombang, “Speech to text for Indonesian homophone phrase with Mel Frequency Cepstral Coefficient,” Proc. - Cybern. 2016 Int. Conf. Comput. Intell. Cybern., pp. 29–31, Apr. 2017, doi: 10.1109/CYBERNETICSCOM.2016.7892562.

. V. Khisamova, L. Abdullina, L. Nurgalieva, and E. Khabibullina, “Classification of Homonymic Terms in Medical Terminology of English, Russian and Tatar Languages,” J. Educ. Soc. Res., vol. 10, no. 6, pp. 18–34, 2020, doi: 10.36941/jesr-2020-0107.

. I. Faško, “Orthographic and orthoepic diversity of Serbo-Slovak interlingual approximates,” Stud. z Filol. Pol. i Slowianskiej, vol. 51, pp. 58–71, 2016, doi: 10.11649/sfps.2016.005.

. S. El-Sappagh, M. Elmogy, and A. M. Riad, “A fuzzy-ontology-oriented case-based reasoning framework for semantic diabetes diagnosis,” Artif. Intell. Med., vol. 65, no. 3, pp. 179–208, Nov. 2015, doi: 10.1016/J.ARTMED.2015.08.003.

. J. Zhai, W. Luan, Y. Liang, and J. Jiang, “Using ontology to represent fuzzy knowledge for fuzzy systems,” Proc. - 5th Int. Conf. Fuzzy Syst. Knowl. Discov. FSKD 2008, vol. 3, pp. 673–677, 2008, doi: 10.1109/FSKD.2008.326.

. M. A. Abou-Of, “A Fuzzy, Incremental and Semantic Trending Topic Detection in Social Feeds,” 2020 11th Int. Conf. Inf. Commun. Syst. ICICS 2020, pp. 118–124, Apr. 2020, doi: 10.1109/ICICS49469.2020.239492.

. P. P. Gokul, B. K. Akhil, and K. K. M. Shiva, “Sentence similarity detection in Malayalam language using cosine similarity,” RTEICT 2017 - 2nd IEEE Int. Conf. Recent Trends Electron. Inf. Commun. Technol. Proc., vol. 2018-January, pp. 221–225, Jul. 2017, doi: 10.1109/RTEICT.2017.8256590.

. “Some Cosine Similarity Measures for Picture Fuzzy Sets and Their Applications to Strategic Decision Making - Yahoo Search Results.” https://search.yahoo.com/search?fr=mcafee&type=E210US91215G0&p=Some+Cosine+Similarity+Measures+for+Picture+Fuzzy+Sets+and+Their+Applications+to+Strategic+Decision+Making&vm=r (accessed Dec. 21, 2022).

. Y. Lv, “Constructing fuzzy ontology based on fuzzy EER model,” Proc. - 2010 7th Int. Conf. Fuzzy Syst. Knowl. Discov. FSKD 2010, vol. 3, pp. 1109–1113, 2010, doi: 10.1109/FSKD.2010.5569169.

. O. Peleg, L. Edelist, Z. Eviatar, and D. Bergerbest, “Lexical factors in conceptual processes: The relationship between semantic representations and their corresponding phonological and orthographic lexical forms,” Mem. Cogn., vol. 44, no. 4, pp. 519–537, 2016, doi: 10.3758/s13421-015-0576-5.

. Z. Wang et al., “Unpacking the relation between morphological awareness and reading comprehension in Chinese children,” Br. J. Educ. Psychol., 2023, doi: 10.1111/bjep.12591.

. U. Taladngoen and R. H. Esteban, “Assumptions on Plausible Lexical Distractors in the Redesigned TOEIC Question-Response Listening Test,” Learn J. Lang. Educ. Acquis. Res. Netw., vol. 15, no. 2, pp. 802–829, 2022, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85134701272&partnerID=40&md5=9b88a55744d07452a1b20eebb1b46fa7

. M. Kadem, B. Herrmann, J. M. Rodd, and I. S. Johnsrude, “Pupil Dilation Is Sensitive to Semantic Ambiguity and Acoustic Degradation,” Trends Hear., vol. 24, 2020, doi: 10.1177/2331216520964068.

. X. Zhou and H. Zhang, “Flexible pattern matching algorithm in chinese strings,” in Proceedings of the 27th Chinese Control Conference, CCC, 2008, pp. 610–614. doi: 10.1109/CHICC.2008.4604947.

. Y. Wang, Y. Jia, Y. Tian, and J. Xiao, “Deep reinforcement learning with the confusion-matrix-based dynamic reward function for customer credit scoring,” Expert Syst. Appl., vol. 200, p. 117013, Aug. 2022, doi: 10.1016/J.ESWA.2022.117013.

. Y. Maeda, “Ambigous state evaluation of fuzzy algorithm based on Fuzzy Petri Nets,” IEEE Int. Conf. Fuzzy Syst., vol. 2, pp. 1230–1234, 1994, doi: 10.1109/FUZZY.1994.343646.

. D. Gustian, B. Lestari, N. S. Rejeki, and N. M. Zasmine, “Fuzzy Inference System in Determining Nutritional Status of Toddlers,” 6th Int. Conf. Comput. Eng. Des. ICCED 2020, Oct. 2020, doi: 10.1109/ICCED51276.2020.9415781.

. S. S. S. K. Reddy and P. Supriya, “Detection of Wild Elephants Using Machine Learning Algorithms,” Proc. 2nd Int. Conf. Electron. Sustain. Commun. Syst. ICESC 2021, pp. 1897–1901, Aug. 2021, doi: 10.1109/ICESC51422.2021.9532827.

. J. Xu, Y. Zhang, and D. Miao, “Three-way confusion matrix for classification: A measure driven view,” Inf. Sci. (Ny)., vol. 507, pp. 772–794, Jan. 2020, doi: 10.1016/J.INS.2019.06.064.

. M. F. Mridha, M. A. Hamid, M. M. Rana, M. E. A. Khan, M. M. Ahmed, and M. T. Sultan, “Semantic error detection and correction in Bangla sentence,” in 2019 Joint 8th International Conference on Informatics, Electronics and Vision, ICIEV 2019 and 3rd International Conference on Imaging, Vision and Pattern Recognition, icIVPR 2019 with International Conference on Activity and Behavior Computing, ABC 2019, 2019, pp. 184–189. doi: 10.1109/ICIEV.2019.8858522.

. H.-S. Park, H.-J. Chang, and J.-D. Kim, “Homonym Comprehension and Definition of School-Aged Children with Language Learning Disabilities in First to Third Grades,” Audiol. Speech Res., vol. 17, no. 1, pp. 103–111, 2021, doi: 10.21848/ASR.200067.

. P. Ghosh, T. S. Chingtham, and M. K. Ghose, “SLHAR: A supervised learning approach for homophone ambiguity reduction from speech recognition system,” Proc. - 2016 2nd IEEE Int. Conf. Res. Comput. Intell. Commun. Networks, ICRCICN 2016, pp. 12–16, Jan. 2017, doi: 10.1109/ICRCICN.2016.7813543.

Published

2023-11-28

How to Cite

Darma Putra, I. K. G., & Aswi Ramadhani, R. (2023). Utilization of Fuzzy Ontology for the Meaning of Homonymous and Homophones Ambiguous Sentences. Qubahan Academic Journal, 3(4), 234–244. https://doi.org/10.48161/qaj.v3n4a176

Issue

Section

Articles