Influence of Coal Mining Activities on Soil's Agrochemical and Biochemical Properties
DOI:
https://doi.org/10.48161/qaj.v3n4a229Abstract
Recultivation of technologically disturbed land is an important objective of environmental protection. The study aimed to examine the impact of the coal mining process on the agrochemical and biochemical parameters of soil. Agrochemical and biochemical analysis of soil samples was conducted before and after the mining reclamation stage. The baseline indicators of coal mines indicated that all studied territories needed a full cycle of technologically disturbed land recultivation measures. Before the initial stage of recultivation, the content of carbonate-ion, bicarbonate-ion, copper, lead, zinc, cadmium, and petroleum products in soil samples from the coal mine met the norms and requirements of authorizing documents, and part of the samples from the territory of the Sample 2 coal mine were marked by increased pH and reduced humus content. All samples exceeded the background values of mobile forms of zinc, manganese, copper, lead, nickel, chromium, and cobalt. To effectively improve soil fertility, it is recommended to use biochar, compost, and/or peat and apply organic and inorganic fertilizers. The next stage of research will involve the biological reclamation of technogenically disturbed areas of the coal mines with cultivated and wild plants.
Downloads
References
Abe, Y., Kobayashi, N., Yamaguchi, M., Mutsuga, M., Ozaki, A., Kishi, E., & Sato, K. (2021). Determination of formaldehyde and acetaldehyde levels in poly(ethylene terephthalate) (PET) bottled mineral water using a simple and rapid analytical method. Food Chemistry, 344, 128708. https://doi.org/10.1016/j.foodchem.2020.128708
Almanova, Z., Kenzhegulova, S., Kashkarov, A., Kekilbayeva, G., Ussalinov, E., Yerzhan, D., Zhakenova, A., & Zvyagin, G. (2016). Changes in soil fertility indicators after long-term agricultural use in Northern Kazakhstan. International Journal of Design & Nature and Ecodynamics, 18(5), 1045-1053. https://doi.org/10.18280/ijdne.180504
Baldocchi, D., & Penuelas, J. (2019). The physics and ecology of mining carbon dioxide from the atmosphere by ecosystems. Global Change Biology, 25(4), 1191-1197. http://dx.doi.org/10.1111/gcb.14559
Bittelli, M., Tomei, F., Anbazhagan, P., Pallapati, R. R., Mahajan, P., Meisina, C., Bordoni, M., & Valentino, R. (2021). Measurement of soil bulk density and water content with time domain reflectometry: Algorithm implementation and method analysis. Journal of Hydrology, 598, 126389. https://doi.org/10.1016/j.jhydrol.2021.126389
Chehabeddine, M., & Tvaronavičienė, M. (2020). Securing regional development. Insights into Regional Development, 2(1), 430-442. http://dx.doi.org/10.9770/IRD.2020.2.1(3)
Chibrik, T. S. (2002). Fundamentals of biological remediation. Ural University Publishing House, 172 p.
Fabre, B., Roth, E., & Kergaravat, O. (2005). Analysis of the insecticide hexachlorocyclohexane isomers in biological media. A review. Environmental Chemistry Letters, 3, 122-126. https://doi.org/10.1007/s10311-005-0014-1
Gallo, M., Formato, A., Ciaravolo, M., Formato, G., & Naviglio, D. (2020). Study of the kinetics of extraction process for the production of hemp inflorescences extracts by means of Conventional Maceration (CM) and Rapid Solid-Liquid Dynamic Extraction (RSLDE). Separations, 7(2), 20. https://doi.org/10.3390/separations7020020
Gamage, D., Thompson, M., Sutherland, M., Hirotsu, N., Makino, A., & Seneweera, S. (2018). New insights into the cellular mechanisms of plant growth at elevated atmospheric carbon dioxide concentrations. Plant, Cell & Environment, 41(6), 1233-1246. http://dx.doi.org/10.1111/pce.13206
Guo, X.-M., Zhao, T.-Q., Chang, W.-K., Xiao, C.-Y., & He, Y.-X. (2018). Evaluating the effect of coal mining subsidence on the agricultural soil quality using principal component analysis. Chilean Journal of Agricultural Research, 78(2), 173-182. https://doi.org/10.4067/S0718-58392018000200173
Gurov, F., Shirokova, V. A., Khutorova, A. O., & Yurova, Y. D. (2019). Features of remote determination of humus content in Arable soils. In Proceedings of the VIII Science and Technology Conference “Contemporary Issues of Geology, Geophysics and Geo-ecology of the North Caucasus” (CIGGG 2018) (pp. 138-141). Atlantis Press. https://doi.org/10.2991/ciggg-18.2019.25
Hu, J., Zhuang, Z., Pan, M., Han, T., Li, Y., & Liu, W. (2022). A method of the determination nitrate nitrogen (NO3−-N) in high-salinity water samples. Chemical Papers, 76, 1739-1744. https://doi.org/10.1007/s11696-021-02007-w
Ishtiaq, M., Jehan, N., Khan, S. A., Muhammad, S., Saddique, U., Iftikhar, B., & Zahidullah. (2018). Potential harmful elements in coal dust and human health risk assessment near the mining areas in Cherat, Pakistan. Environmental Science and Pollution Research, 25(15), 14666-14673. https://link.springer.com/article/10.1007/s11356-018-1655-5
Ismail, P. (2017). Ash content determination. In Food analysis laboratory manual (pp. 117-119). Springer. https://doi.org/10.1007/978-3-319-44127-6_11
Jacobson, T. A., Kler, J. S., Hernke, M. T., Braun, R. K., Meyer, K. C., & Funk, W. E. (2019). Direct human health risks of increased atmospheric carbon dioxide. Nature Sustainability, 2(8), 691-701. http://dx.doi.org/10.1038/s41893-019-0323-1
Jain, A., & Taylor, R. W. (2023). Determination of cation exchange capacity of calcareous soils: Comparison of summation method and direct replacement method. Communications in Soil Science and Plant Analysis, 54(6), 743-748. http://dx.doi.org/10.1080/00103624.2022.2118765
Kayumov, F. S. ugli, & Tukhtaev, H. R. (2022). Determination of moisture absorption of dry extracts. European Journal of Agricultural and Rural Education, 3(6), 84-87. https://doi.org/10.17605/OSF.IO/T3EJP
Kimball, B. A. (2016). Crop responses to elevated CO2 and interactions with H2O, N, and temperature. Current Opinion in Plant Biology, 31, 36-43. http://dx.doi.org/10.1016/j.pbi.2016.03.006
Kopytov, I. (2018). Optimization of the development strategy of the coal industry – A guarantee of efficiency, safety and stability of the industrial potential of the Kuzbass economy. Bulletin of the Kuzbass State Technical University, 2(126), 5-11. https://doi.org/10.26730/1999-4125-2018-2-5-11
Kopytov, I., & Kupriyanov, A. N. (2019). New strategy for the development of the Kuzbass coal industry and solving environmental problems. Coal, 11(1124), 89-93. https://doi.org/10.18796/0041-5790-2019-11-89-93
Kopytov, I., & Shaklein, S. V. (2018). Directions for improving the development strategy of the Kuzbass coal industry. Coal, 5(1106), 80-86. https://doi.org/10.18796/0041-5790-2018-5-80-86
Koshelkov, M., & Mayorova, L. P. (2023). Assessment of benzo(a)pyrene soil contamination in Khabarovsk. Ekologiya Cheloveka, 30(3), 181-198. https://doi.org/10.17816/humeco112097
Kweku, D. W., Bismark, O., Maxwell, A., Desmond, K. A., Danso, K. B., Oti-Mensah, E. A., Quachie, A. T., & Adormaa, B. B.. (2018). Greenhouse effect: Greenhouse gases and their impact on global warming. Journal of Scientific Research and Reports, 17(6), 1-9. http://dx.doi.org/10.9734/JSRR/2017/39630
Li, Q. (2021). The view of technological innovation in coal industry under the vision of carbon neutralization. International Journal of Coal Science & Technology, 8(6), 1197-1207. http://dx.doi.org/10.1007/s40789-021-00458-w
Li, X., Lei, S., Liu, F., & Wang, W. (2020). Analysis of plant and soil restoration process and degree of refuse dumps in open-pit coal mining areas. International Journal of Environmental Research and Public Health, 17(6), 1975. https://doi.org/10.3390/ijerph17061975
Lin, K., Zhu, Y., Zhang, Y., & Lin, H. (2019). Determination of ammonia nitrogen in natural waters: Recent advances and applications. Trends in Environmental Analytical Chemistry, 24, e00073. https://doi.org/10.1016/j.teac.2019.e00073
Mikhaylov, A., Moiseev, N., Aleshin, K., & Burkhardt, T. (2020). Global climate change and greenhouse effect. Entrepreneurship and Sustainability Issues, 7(4), 2897. http://dx.doi.org/10.9770/jesi.2020.7.4(21)
Moumen, Z., El Idrissi, N. E. A., Tvaronavičienė, M., & Lahrach, A. (2019). Water security and sustainable development. Insights into Regional Development, 1(4), 301-317. http://dx.doi.org/10.9770/ird.2019.1.4(2)
Mussynov, K. M., Kipshakbaeva, A. A., Arinov, B. K., Utelbayev, Y. A., & Bazarbayev, B. B. (2014). Producing capacity of safflower on dark brown soils of the northern Kazakhstan. Biosciences Biotechnology Research Asia, 11(3), 1121-1130.
Nasiyev, B., & Dukeyeva, A. (2023). Influence of mineral fertilizers and methods of basic tillage on the yield and oil content of sunflower. OnLine Journal of Biological Sciences, 23(3), 296-306. http://dx.doi.org/10.3844/ojbsci.2023.296.306
Nasiyev, B., Shibaikin, V., Bekkaliyev, A., Zhanatalapov, N. Z., & Bekkaliyeva, A. (2022a). Changes in the quality of vegetation cover and soil of pastures in semi-deserts of West Kazakhstan, depending on the grazing methods. Journal of Ecological Engineering, 23(10), 50-60. http://dx.doi.org/10.12911/22998993/152313
Nasiyev, B. N. (2013). The role of organic fertilizers in increasing the fertility of west Kazakhstan soils. Polish Journal of Soil Science, 46(2), 115-146.
Nasiyev, B. N., Bekkaliyeva, A. K., Vassilina, T. K., Shibaikin, V. A., & Zhylkybay, A. M. (2022b). Biologized technologies for cultivation of field crops in the organic farming system of West Kazakhstan. Journal of Ecological Engineering, 23(8), 77-88. https://doi.org/10.12911/22998993/150625
Neverov, E. N., Korotkiy, I. A., Korotkih, P. S., & Mokrushin, M. Y. (2022). Improving the environmental efficiency of engineering systems operating under the scheme of secondary use of thermal energy. International Journal of Heat and Technology, 40(6), 1533-1539.
Nielsen, S. S. (2017). Moisture content determination. In Food analysis laboratory manual (pp. 105-115). Springer. https://doi.org/10.1007/978-3-319-44127-6_10
Orecchio, S., Amorello, D., & Barreca, S. (2016). Wood pellets for home heating can be considered environmentally friendly fuels? Heavy metals determination by inductively coupled plasma-optical emission spectrometry (ICP-OES) in their ashes and the health risk assessment for the operators. Microchemical Journal, 127, 178-183. https://doi.org/10.1016/j.microc.2016.03.008
Oxukbayeva, A., Abramov, N., Baidalin, M., & Semizorov, S. (2023). The effect of differentiated nitrogen fertilization using satellite navigation systems on the spring wheat (Triticum aestivum L.) crop yield in the conditions of chernozem-like soils in the northern forest steppe of the Tyumen Region of Russia. OnLine Journal of Biological Sciences, 23(1), 57-64. https://doi.org/10.3844/ojbsci.2023.57.64
Peters, G. P., Andrew, R. M., Canadell, J. G., Friedlingstein, P., Jackson, R. B., Korsbakken, J. I., Le Quéré, C., & Peregon, A. (2020). Carbon dioxide emissions continue to grow amidst slowly emerging climate policies. Nature Climate Change, 10(1), 3-6. http://dx.doi.org/10.1038/s41558-019-0659-6
Qin, G., Zou, K., He, F., Shao, J., Zuo, B., Liu, J., Liu, R., Yang, B., & Zhao, G. (2023). Simultaneous determination of volatile phenol, cyanide, anionic surfactant, and ammonia nitrogen in drinking water by a continuous flow analyzer. Scientific Reports, 13, 1829. https://doi.org/10.1038/s41598-023-28776-w
Sagdeeva, L., Starikova, L., & Trapeznikova, I. (2019). Life quality investments and environmental damage decreasing in coal mining regions. E3S Web of Conferences, 105, 04008. http://dx.doi.org/10.1051/e3sconf/201910504008
Taherian, R. (2019). 11 – Developments and modeling of electrical conductivity in composites. In R. Taherian, & A. Kausar (Eds.), Electrical conductivity in polymer-based composites: Experiments, modelling, and applications (pp. 297-363). William Andrew Publishing. https://doi.org/10.1016/B978-0-12-812541-0.00011-2
Toebelmann, D., & Wendler, T. (2020). The impact of environmental innovation on carbon dioxide emissions. Journal of Cleaner Production, 244, 118787. http://dx.doi.org/10.1016/j.jclepro.2019.118787
Trick, J. K., Stuart, M., & Reeder, S. (2018). Chapter 3 – Contaminated groundwater sampling and quality control of water analyses. In B. De Vivo, H. E. Belkin, & A. Lima (Eds.), Environmental geochemistry: Site characterization, data analysis and case histories (2nd ed.) (pp. 25-45). Elsevier. https://doi.org/10.1016/B978-0-444-63763-5.00004-5
Vago, I., Czinkota, I., Rekasi, M., Sipos, M., Kovacs, A., & Tolner, L. (2010). Development of a new, more adequate method for the determination of soil acidity. Studia Universitatis “Vasile Goldiş”, Seria Ştiinţele Vieţii, 20(3), 77-80.
Vajová, I., Vizárová, K., Tiňo, R., Krivoňáková, N., Takáč, Z., & Katuščák, S. (2021). Determination of pH distribution through pH-related properties in deacidified model paper. The European Physical Journal Plus, 136, 578. https://doi.org/10.1140/epjp/s13360-021-01495-9
Vicentini-Polette, M., Ramos, P. R., Gonçalves, C. B., & De Oliveira, A. L. (2021). Determination of free fatty acids in crude vegetable oil samples obtained by high-pressure processes. Food Chemistry: X, 12, 100166. https://doi.org/10.1016/j.fochx.2021.100166
Wallace-Wells, D. (2019). The uninhabitable earth. In S. Holt (Ed.), The best American magazine writing 2018 (pp. 271-294). Columbia University Press.
Yakovchenko, M. A., Izmulkina, E. A., Stenina, N. A., & Ivina, O. A. (2021). Soil-agrochemical analysis of the fertile soil layer from the Erunakovskiy field of the Taldinskiy coal mine. Journal of Physics: Conference Series, 1749, 012045. https://doi.org/10.1088/1742-6596/1749/1/012045
Yakovchenko, M. A., Kosolapova, A. A., & Ermolaev, V. A. (2017). The study of soil and agrochemical features of zonal soils of coal mining enterprises in Kemerovo Region. IOP Conference Series: Earth and Environmental Science, 50, 012031. https://doi.org/10.1088/1755-1315/50/1/012031
Zhang, Y., Yuan, Z., Margni, M., Bulle, C., Hua, H., Jiang, S., & Liu, X. (2019). Intensive carbon dioxide emission of coal chemical industry in China. Applied Energy, 236, 540-550. http://dx.doi.org/10.1016/j.apenergy.2018.12.022
Zhou, T., Jia, C., Zhang, K., Yang, L., Zhang, D., Cui, T., & He, X. (2023). A rapid detection method for soil organic matter using a carbon dioxide sensor in situ. Measurement, 208, 112471. https://doi.org/10.1016/j.measurement.2023.112471
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Qubahan Academic Journal
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.