Optimization of Electrical Discharge Machining Process by Metaheuristic Algorithms


  • Nurezayana Zainal Faculty of Computer Science and Information Technology, University Tun Hussein Onn Malaysia, 86400, Batu Pahat, Johor, Malaysia;
  • Mohanavali Sithambranathan Faculty of Computer Science and Information Technology, University Tun Hussein Onn Malaysia, 86400, Batu Pahat, Johor, Malaysia;
  • Umar Farooq Khattak School of Information Technology, UNITAR International University, Kelana Jaya, 47301 Petaling Jaya, Selangor, Malaysia;
  • Azlan Mohd Zain School of Computing, Faculty of Engineering, Universiti Teknologi Malaysia, Sekudai Johor, Malaysia;
  • Salama A. Mostafa Faculty of Computer Science and Information Technology, University Tun Hussein Onn Malaysia, 86400, Batu Pahat, Johor, Malaysia;
  • Ashanira Mat Deris Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia;




Because of its versatility and ability to work with difficult materials, Electrical Discharge Machining (EDM) has become an essential tool in many different industries. It can produce precise shapes and intricate details. EDM has transformed fabrication processes in a variety of industries, including aerospace and electronics, medical implants and surgical instruments, and the shaping of small components. Its capacity to machine undercuts and deep cavities with little material removal makes it ideal for producing complex geometries that would be challenging or impossible to accomplish with conventional machining techniques. Several attempts have been carried out to solve the optimization problem involved in the EDM process. This paper emphasizes optimizing the EDM process using three metaheuristic algorithms: Glowworm Swarm Optimization (GSO), Grey Wolf Optimizer (GWO), and Whale Optimization Algorithm (WOA). The study's outcome showed that the GWO algorithm outperformed the GSO and WOA algorithms in solving the EDM optimization problem and achieved the minimum surface roughness value of 1.7593µm.


Download data is not yet available.


Zainal, N., Zain, A. M., Sharif, S., Hamed, H. N. A., & Yusuf, S. M. (2017). An integrated study of surface roughness in EDM process using regression analysis and GSO algorithm. In Journal of Physics: Conference Series (Vol. 892, No. 1, p. 012002). IOP Publishing.

Karmiris-Obratański, P., Papazoglou, E. L., Leszczyńska-Madej, B., Zagórski, K., & Markopoulos, A. P. (2021). A comprehensive study on processing ti–6al–4v eli with high power edm. Materials, 14(2), 303.

Ming, W., Guo, X., Xu, Y., Zhang, G., Jiang, Z., Li, Y., & Li, X. (2023). Progress in non-traditional machining of amorphous alloys. Ceramics International, 49(2), 1585-1604.

Singh, N. K., Agrawal, S., Johari, D., & Singh, Y. (2019). Predictive analysis of surface roughness in argon-assisted EDM using semiempirical and ANN techniques. SN Applied Sciences, 1, 1-8.

Zainal, N., Zain, A. M., & Sharif, S. (2016). A study of electrode wear ratio on EDM of Ti-6AL-4V with copper-tungsten electrode. In MATEC Web of Conferences (Vol. 78, p. 01013). EDP Sciences.

Thakur, A., Rao, P. S., & Khan, M. Y. (2021). Study and optimization of surface roughness parameter during electrical discharge machining of titanium alloy (Ti-6246). Materials Today: Proceedings, 44, 838-847.

Sahu, A. K., Thomas, J., & Mahapatra, S. S. (2021). An intelligent approach to optimize the electrical discharge machining of titanium alloy by simple optimization algorithm. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 235(2), 371-383.

Zainal, N., Zain, A. M., Radzi, N. H. M., & Othman, M. R. (2016). Glowworm swarm optimization (GSO) for optimization of machining parameters. Journal of Intelligent Manufacturing, 27, 797-804.

Baisukhan, A., Nakkiew, W., & Wisittipanit, N. (2022). Optimization of Tungsten Inert Gas Welding Process Parameters for AISI 304 Stainless Steel. In Defect and Diffusion Forum (Vol. 417, pp. 23-28). Trans Tech Publications Ltd.

Kulkarni, O., & Kulkarni, S. (2018). Process parameter optimization in WEDM by grey wolf optimizer. Materials Today: Proceedings, 5(2), 4402-4412.

Jain, S., Soni, A., Parashar, V., & Reddy, P. (2021). Analysis of Kerf in Wire cut Electric Discharge Machining using RSM and Whale Optimization Algorithm. In 2021 4th Biennial International Conference on Nascent Technologies in Engineering (ICNTE) (pp. 1-7). IEEE.

Chekuri, R. B. R., Eshwar, D., Kotteda, T. K., & Varma, R. S. (2022). Experimental and thermal investigation on die-sinking EDM using FEM and multi-objective optimization using WOA-CS. Sustainable Energy Technologies and Assessments, 50, 101860.

Faris, H., Aljarah, I., Al-Betar, M. A., & Mirjalili, S. (2018). Grey wolf optimizer: a review of recent variants and applications. Neural computing and applications, 30, 413-435.

Zainal, N, & Zain, A. M. (2023). Parametric Optimization Of Surface Roughness In Die Sinking Electrical Discharge Machining Using Regression And Grey Wolf Optimizer." Computational Intelligence Applications Series 4, 1-11.

Gharehchopogh, F. S., & Gholizadeh, H. (2019). A comprehensive survey: Whale Optimization Algorithm and its applications. Swarm and Evolutionary Computation, 48, 1-24.

Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in engineering software, 95, 51-67.

Bhowmick, S., Mondal, R., Sarkar, S., Biswas, N., De, J., & Majumdar, G. (2023). Parametric optimization and prediction of MRR and surface roughness of titanium mixed EDM for Inconel 718 using RSM and fuzzy logic. CIRP Journal of Manufacturing Science and Technology, 40, 10-28.

Singh, R., Singh, R. P., & Trehan, R. (2022). Machine learning algorithms based advanced optimization of EDM parameters: An experimental investigation into shape memory alloys. Sensors International, 3, 100179.

Sharma, H., & Singh, B. (2023). Experimental design based optimization of process parameters for EDM of AA6068. Materials Today: Proceedings.

Agarwal, N., Shrivastava, N., & Pradhan, M. K. (2021). Hybrid ANFIS‐Rao algorithm for surface roughness modelling and optimization in electrical discharge machining. Advances in Production Engineering & Management, 16(2), 145-160.

Azadi Moghaddam, M., & Kolahan, F. (2020). Modeling and optimization of the electrical discharge machining process based on a combined artificial neural network and particle swarm optimization algorithm. Scientia Iranica, 27(3), 1206-1217.

Singh, R., Singh, R. P., & Trehan, R. (2021). State of the art in processing of shape memory alloys with electrical discharge machining: a review. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 235(3), 333-366.

Soundhar, A., Zubar, H. A., Sultan, M. T. B. H. H., & Kandasamy, J. (2019). Dataset on optimization of EDM machining parameters by using central composite design. Data in brief, 23, 103671.

Montgomery, D. C., Peck, E. A., & Vining, G. G. (2021). Introduction to linear regression analysis. John Wiley & Sons.

Tanwar, H., Singh, T., Khichi, B., Singh, R. C., & Singari, R. M. (2021). Study and Design Conceptualization of Compliant Mechanisms and Designing a Compliant Accelerator Pedal. In Advances in Manufacturing and Industrial Engineering: Select Proceedings of ICAPIE 2019 (pp. 285-295). Springer Singapore.

Ganesh, N., Ghadai, R. K., Bhoi, A. K., Kalita, K., & Gao, X. Z. (2020). An intelligent predictive model-based multi-response optimization of EDM process. Computer Modeling in Engineering & Sciences, 124(2), 459-476.

Patel Gowdru Chandrashekarappa, M., Kumar, S., Pimenov, D. Y., & Giasin, K. (2021). Experimental analysis and optimization of EDM parameters on HcHcr steel in context with different electrodes and dielectric fluids using hybrid taguchi-based PCA-utility and CRITIC-utility approaches. Metals, 11(3), 419.

Tharian, B. K., Jacob, E., Johnson, J., & Hari, V. (2019). Multi-objective parametric optimization in EDM using grey relational analysis. Materials Today: Proceedings, 16, 1013-1019.

Nguyen, H. P., Ngo, N. V., & Nguyen, Q. T. (2021). Optimizing process parameters in edm using low frequency vibration for material removal rate and surface roughness. Journal of King Saud University-Engineering Sciences, 33(4), 284-291.

Goyal, A., & Ur Rahman, H. U. Z. E. F. (2021). Experimental studies on Wire EDM for surface roughness and kerf width for shape memory alloy. Sādhanā, 46(3), 160.

Phate, M., Toney, S., & Phate, V. (2022). Modelling and investigating the impact of EDM parameters on surface roughness in EDM of Al/Cu/Ni Alloy. Australian Journal of Mechanical Engineering, 20(5), 1226-1239.



How to Cite

Zainal, N., Sithambranathan, M. ., Farooq Khattak, U., Mohd Zain, A. ., A. Mostafa, S., & Mat Deris, A. (2024). Optimization of Electrical Discharge Machining Process by Metaheuristic Algorithms. Qubahan Academic Journal, 4(1), 277–289. https://doi.org/10.48161/qaj.v4n1a465