Comparison of the Porosity Parameter in Sediments Obtained Using Traditional and Precision Methods (Cenomanian Deposits in Western Siberia, Russia)

Authors

  • Vitaliya Naumenko Laboratory for Workover Technologies and Well Stimulation, Tyumen Industrial University, Russia
  • Mikhail Zavatskij Department of Oil and Gas Deposits Geology, Tyumen Industrial University, Russia
  • Daniil Skudar Laboratory for Workover Technologies and Well Stimulation, Tyumen Industrial University, Russia

DOI:

https://doi.org/10.48161/qaj.v3n4a170

Abstract

The study focuses on porosity, an important parameter for calculating reserves. Traditionally, weight-based methods are used in calculation, which implies a simple approach to estimating hydrocarbon reserves. However, this study is based on the need to show that effective reserve assessment and hydrocarbon production planning require a combination of various methods supplemented by dynamic modeling. The Cenomanian deposit of the Yamburgskoe and Yubileynoe deposits in Western Siberia, Russia is the object of the study. A comparison is made based on the data obtained during the direct analysis using Preobrazhensky's method and microtomography of the core of the Cenomanian deposit. The study is carried out to evaluate the representativeness of various methods of measuring porosity and to investigate directly the reservoir of the Cenomanian deposit  

Downloads

Download data is not yet available.

References

Majd, M. T., Hezarkhani, A. (2011). Estimation of Spatial Distribution of Porosity by Using Neural Networks Method in One of Oil Fields in South of IRAN. Australian Journal of Basic and Applied Sciences, 5(8), 182–189.

Selley, R. C., Sonnenberg, S. A. (2023). The Reservoir. In Elements of Petroleum Geology (4th ed.). 275–359. doi: 10.1016/B978-0-12-822316-1.00006-9

Potylitsyn, V., Kudinov, D., Kokhankova, E., Shaydurov, G. (2020). The Results of Observing the Seismoelectric Effect in a Gas Condensate Hydrocarbon Field Using a Source of Seismic Field. International Journal of GEOMATE, 20(77), 33–39. doi: 10.21660/2020.77.62979

Tikhomirova, E. A., Mishchenko, K. P. (2021). Estimation of Parameter Uncertainty for Hydrocarbon Reserves Estimation. Bulletin of TvGU. Series: Geography and Geoecology, 1(33), 35–41.

Vasiliev, E. R., Zakieva, R. R., Petrov, S. M., Kantyukov, R. R., Shenkarenko, S. V. (2020). Transformations of Oil Hydrocarbons in Aqueous Fluids: Aquatermolysis in Subcritical and Supercritical Water. ARPN Journal of Engineering and Applied Sciences, 15(15), 1672–1677.

Saemi, M., Ahmadi, M., Varjani, A. Y. (2007). Design of Neural Networks Using Genetic Algorithm for the Permeability Estimation of the Reservoir. Journal of Petroleum Science and Engineering, 59(1–2), 97–105. doi: 10.1016/j.petrol.2007.03.007

Allshorn, S. L., Dawe, R. A., Grattoni, C. A. (2019). Implication of Heterogeneities on Core Porosity Measurements. Journal of Petroleum Science and Engineering, 174, 486–494. doi: 10.1016/j.petrol.2018.11.045

Putilov, I. S., Rekhachev, P. N., Gurbatova, I. P., Barkovskii, N. N., Iakimov, O. I., Moroziuk, O. A. (2016). Full-Size Core Epoch at Laboratory Research of Eor Technologies. Bulletin of PNRPU. Geology. Oil & Gas Engineering & Mining, 15(19), 155–164. doi: 10.15593/2224-9923/2016.19.6

Kuzhel, S. V., Sdvizhkova, E. A., Shashenko, A. N. (2004). Scale Effect in Rocks. Donetsk: Nord Press.

Khasanov, D. I., Lonshakov, M. A. (2020). Investigation of the Scale Effect and the Concept of a Representative Volume Element of Rocks in Relation to Porosity. Georesources, 22(4), 55–69. doi: 10.18599/grs.2020.4.55-69

Korost, D. V., Kalmykov, G. A., Reshetov, E. V., Blokhin, V. S. (2009). Petrophysical Support for the Interpretation of a Complex of Geophysical Surveys of Wells Based on Spectrometric Gamma Ray Logging. Bulletin of Moscow University. Series 4. Geology, 2, 68–74.

Katanov, Y., Vaganov, Y., Cheymetov, M. (2021). Neural Simulation-Based Analysis of the Well Wall Stability while Productive Seam Penetrating. Mining of Mineral Deposits, 15(4), 91–98. doi: 10.33271/MINING15.04.091

Veliev, R. G. (2019). Determination of the Porosity Coefficient of Rocks of a Productive Hydrocarbon Reservoir. Nauchnyye Dostizheniya i Otkrytiya 2019: Collection of Articles of IX International Research Contest: in 2 parts, Part 1. 50–55

Sungatullin, R. Kh., Islamova, R. R., Kadyrov, R. I., Sungatullina, G. M. (2017). Traditional and Precision Methods for Studying the Pore Space of Oil Reservoirs. Petroleum Economy, 11, 89–91. doi: 10.24887/0028-2448-2017-11-89-91

Galkin, S. V., Efimov, A. A., Krivoshchekov, S. N., Savitskiy, Ya. V., Cherepanov, S. S. (2015). X-Ray Tomography in Petrophysical Studies of Core Samples from Oil and Gas Fields. Russian Geology and Geophysics, 56(5), 782–792. doi: 10.1016/j.rgg.2015.04.009

da Silva, M. T. Q. S., Perretto, F., Cardoso, M. do Rocio, Mazer, W. (2023). Porosity: Some Characterization Techniques. Materials Today: Proceedings. doi: 10.1016/j.matpr.2023.03.716

Ketcham, R. A., Carlson, W. D. (2001). Acquisition, Optimization and Interpretation of X-Ray Computed Tomographic Imagery: Applications to the Geosciences. Computers & Geosciences, 27(4), 381–400. doi: 10.1016/S0098-3004(00)00116-3

Krivoshchekov, S. N., Kochnev, A. A. (2013). Application Experience of Computed Tomography to Study the Properties of Rocks. Bulletin of PNRPU. Geology. Oil & Gas Engineering & Mining, 6, 32–42.

Savitsky, Y. V. (2015). Modern Capabilities of the X-Ray Tomography Method in the Study of Core Oil and Gas Fields. Bulletin of PNRPU. Geology. Oil & Gas Engineering & Mining, 15, 28–37. doi: 10.15593/2224-9923/2015.15.4

Shilov, G. Y. (2010). Geological Aspects of Pore Pressure Assessment in Well Sections Based on Geophysical Data. Moscow: Gazprom expo.

Sarancha, A. V., Sarancha, I. S. (2014). Low-Pressure Gas of the Cenomanian Deposits of the Yamal-Nenets Autonomous Okrug. Academic Journal of Western Siberia, 10(3(52)), 146–147.

Kusov, G. V., Savenok, O. V. (2020). Low-Pressure Petroleum Gas: Volumes of Production and Complications Arising During Its Collection and Preparation. Bulatov Readings, 4, 69–76.

Sarancha, A. V., Sarancha, I. S., Mitrofanov, D. A., Ovezova, S. M. (2015). Technologies for Production of Low-Pressure Cenomanian Gas. Modern Problems of Science and Education, 1–1, 211.

Zakirov, S. N., Zakirov, E. S., Zakirov, I. S., Baganova, M. N., Spiridonov, A. V. (2004). New Principles and Technologies of Oil and Gas Field Development. Moscow: Institute of Oil and Gas Problems of the Russian Academy of Sciences.

Ivanitsky, A. V. (2018). Determination of the Open Porosity Coefficient of Rocks Using the Liquid-Saturation Method and the Gas-Volumemetric Method. Alley of Science, 2(7(23)), 227–231.

Gilmanov, Y. I. (2021). Assessment of the Capacitive Space of the Berezovsky Formation Using Modern Laboratory Methods. News of Gas Science, 1(46), 170–175.

Firsova, I. A., Vasbieva, D. G., Litvinov, A. V., Chernova, O. E., Telezhko, I. V. (2019). Trends in the Development of the Global Energy Market. International Journal of Energy Economics and Policy, 9(3), 59–65.

Ilyushin, Y., Afanaseva, O. (2020). Modeling of a Spatial Distributed Management System of a Preliminary Hydro-Cleaning Gasoline Steam Column. In International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM 2020, 2.1, 531–538. doi: 10.5593/sgem2020/2.1/s08.068

Tolmachev, O., Urunov, A., Muminova, S., Dvoichenkova, G., Davydov, I. (2020). Review of Unconventional Hydrocarbon Resources: Production Technologies and Opportunities for Development. Mining of Mineral Deposits, 14(4), 113–121. doi: 10.33271/mining14.04.113

Panikarovskiy, E. V., Panikarovsky, V. V., Listak, M. V., Verkhovod, I. Y., Katanov, Y. E. (2021). Drilling Fluids for Drilling Wells at the Bovanenkovo Oil and Gas Condensate Field. International Journal of Engineering Trends and Technology, 69(12), 8–12. doi: 10.14445/22315381/IJETT-V69I12P202

Ponomarev, A. I., Merkulov, A. V., Sopnev, T. V., Murzalimov, Z. U., Kushch, I. I., Kozhukhar, R. L. (2021). Assessment of the Accuracy of Determining the Porosity Coefficient when Performing Three-Dimensional Geological Constructions. News of Tomsk Polytechnic University. Georesources Engineering, 332(4), 97–106.

Yesmagulova, B. Z., Assetova, A. Y., Tassanova, Z. B., Zhildikbaeva, A. N., Molzhigitova, D. K. (2023). Determination of the Degradation Degree of Pasture Lands in the West Kazakhstan Region Based on Monitoring Using Geoinformation Technologies. Journal of Ecological Engineering, 24(1), 179–187. doi: 10.12911/22998993/155167

Published

2023-12-01

How to Cite

Naumenko, V., Zavatskij, M., & Skudar, D. (2023). Comparison of the Porosity Parameter in Sediments Obtained Using Traditional and Precision Methods (Cenomanian Deposits in Western Siberia, Russia). Qubahan Academic Journal, 3(4), 374–386. https://doi.org/10.48161/qaj.v3n4a170

Issue

Section

Articles

Most read articles by the same author(s)