Integration of a Low Gas-Saturated Zone in Creating a 3D Model of the Medvezhye Field

Authors

  • Artem Shirjaev Laboratory for Workover Technologies and Well Stimulation, Tyumen Industrial University, Russia
  • Yuri Vaganov Laboratory for Workover Technologies and Well Stimulation, Tyumen Industrial University, Russia
  • Vitaliya Naumenko Laboratory for Workover Technologies and Well Stimulation, Tyumen Industrial University, Russia

DOI:

https://doi.org/10.48161/qaj.v3n4a251

Abstract

3D geological modeling is an integral part of reserves estimation and project documentation for the development of gas and oil fields. The developed 3D geological model of the Cenomanian productive complex including the low gas-saturated zone of the Medvezhye field represents a combination of data from the drilling of 350 wells, the structural features of the reservoir, permeability properties determined on cores, seismic surveys, and the results of geophysical well surveys. Based on examining the available well logs recorded in the Medvezhye field wells, the low gas-saturated zone is integrated into the construction of the 3D geological model of the Medvezhye field of the Cenomanian productive complex. A total of three models are constructed, and a 400*400*0.4 m grid is recommended for further hydrodynamic modeling. A comparison of the three grids suggests that a more detailed model delivers more thorough results, however, heavy models cannot be applied to hydrodynamic modeling. Resource estimations do not differ across the three grids significantly.

Downloads

Download data is not yet available.

References

Avilenko, K. V. (2018). ENERGAZ: Opyt podgotovki i komprimirovaniia nizkonapornogo PNG [ENERGAZ: Experience of preparation and compression of low-pressure APG]. Exposition Oil & Gas, 2(62), 58-64.

Bulygin, D. V., Mardanov, R. F., & Ganiev, R. R. (2011). Strukturnye postroeniia pri sozdanii kompiuternykh modelei zalezhei nefti [Structural calculations in the creation of computer models of oil reservoirs]. Georesources, 4(40), 34-39.

Evlikova, L. N., Doroshenko, Yu. E., Kuranina, O. V., & Maksimova, M. A. (2014). Osobennosti tempa padeniia plastovogo davleniia senomanskoi zalezhi Urengoiskogo mestorozhdeniia na pozdnei stadii razrabotki mestorozhdeniia [Features of the reservoir pressure decline rate in the Cenomanian deposit of the Urengoyskoye field at the late stage of field development]. Vesti Gazovoy Nauki, 4, 34-44.

Fadeev, A. P. (2022). Sozdanie kompleksnykh geologicheskikh modelei dlia umensheniia neopredelennostei geologicheskogo stroeniia na primere mestorozhdeniia Timano-Pechorskogo regiona [Creating complex geologic models to reduce uncertainties of geologic structure on the example of a field in the Timan-Pechora region]. In GEOMODEL' 2022: Sbornik materialov 24-y nauchno-prakticheskoy konferentsii po voprosam geologorazvedki i razrabotki mestorozhdeniy nefti i gaza [GEOMODEL 2022: Collection of materials of the 24th scientific and practical conference on geological exploration and development of oil and gas fields] (pp. 18-21).YEAGE GEOMODEL'.

Görz, I., Herbst, M., Börner, J. H., & Zehner, B. (2017). Workflow for the integration of a realistic 3D geomodel in process simulations using different cell types and advanced scientific visualization: Variations on a synthetic salt diapir. Tectonophysics, 699, 42-60. https://doi.org/10.1016/j.tecto.2017.01.011

Kazanskaya, D. A., Alexandrov, V. M., & Belkina, V. A. (2019). Modelirovanie geologicheskogo stroeniia produktivnykh otlozhenii vikulovskoi svity [Geological modelling of Vikulovskaya suite production deposits]. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering, 330(7), 195-207. https://doi.org/10.18799/24131830/2019/7/2195

Khakimov, A. A., & Gurbanov, I. I. (2016). Modelirovanie dvizheniia gaza v dobyvaiushchikh skvazhinakh senomanskikh zalezhei mestorozhdenii Zapadnoi Sibiri na stadii padaiushchei dobychi [Modeling of gas flow in development wells in the Cenomanian deposits of West Siberia at the stage of declining production]. Oil and Gas Studies, 1(115), 85-92.

Kusov, G. V., & Savenok, O. V. (2020). Nizkonapornyi neftianoi gaz: Obemy dobychi i oslozhneniia, voznikaiushchie pri ego sbore i podgotovke [Low pressure petroleum gas: Production volumes and complications arising from its collection and preparation]. Bulatov Readings, 4, 69-76.

Ladeishchikov, S. V., Fadeev, A. P., Dorofeev, N. V., Sabelnikov, I. S., Zhemchugova, T. A., & Iuzhakov, A. L. (2022). Kompleksnyi podkhod k sozdaniiu trekhmernykh geologicheskikh modelei na primere mestorozhdenii Timano-Pechorskogo regiona [Integrated approach to creating three-dimensional geological models on the example of fields in the Timan-Pechora region]. Drilling and Oil, 12, 14-21.

Meulen, M. J. van der, Doornenbal, J. C., Gunnink, J. L., Stafleu, J., Schokker, J., Vernes, R. W., Geer, F. C. van, Gessel, S. F. van, Heteren, S. van, Leeuwen, R. J. W. van, Bakker, M. A. J., Bogaard, P. J. F., Busschers, F. S., Griffioen, J., Gruijters, S. H. L. L., Kiden, P., Schroot, B. M., Simmelink, H. J., Berkel, W. O. van, Krogt, R. A. A. van der, Westerhoff, W. E., & Daalen, T. M. van. (2013). 3D geology in a 2D country: Perspectives for geological surveying in the Netherlands. Netherlands Journal of Geosciences, 92(4), 217-241. https://doi.org/10.1017/S0016774600000184

Ministry of Energy of the Russian Federation. (2000). Regulations on the creation of constantly operating geotechnological models of oil and gas and oil fields, Pub. L. No. RD 153-39.0-047-00. https://minenergo.gov.ru/node/1575?ysclid=lpqz49da7j38689363

Nurgatin, R. I., & Lysov, B. A. (2014). Primenenie 3D modelirovaniia v neftegazovoi otrasli [Application of 3D modeling in the oil and gas industry]. Earth sciences and subsoil use, 1(44), 66-73.

Radwan, A. E. (2022). Chapter Two - Three-dimensional gas property geological modeling and simulation. In D. A. Wood, & J. Cai (Eds.), Sustainable geoscience for natural gas subsurface systems (Vol. 2, pp. 29-49). Gulf Professional Publishing. https://doi.org/10.1016/B978-0-323-85465-8.00011-X

Sarancha, A. V., & Sarancha, I. S. (2014). Nizkonapornyi gaz senomanskikh zalezhei IANAO [Low-pressure gas of the Cenomanian deposits of YNAO]. Academic Journal of West Siberia, 10(3(52)), 146-147.

Supreme Council of the Russian Federation. (1992). Zakon RF "O nedrakh" ot 21.02.1992 No. 2395-1 [Law of the Russian Federation "On subsoil" of February 21, 1992 No. 2395-1]. Sobranie Zakonodatel’stva Rossiiskoi Federatsii [SZ RF] [Collection of Legislation of the RF] 06.03.1995, No. 10, Item 823.

Ulmasvai, F. S., Punanova, S. A., & Vinogradova, T. L. (2008). Kategorii krupnosti senomanskikh uglevodorodnykh skoplenii severnykh regionov Zapadnoi Sibiri kak otrazhenie ikh strukturnykh osobennostei [Size categories of Cenomanian hydrocarbon accumulations of the northern regions of Western Siberia as a reflection of their structural peculiarities]. Geology, Geophysics and Development of Oil and Gas Fields, 4, 4-9.

Wang, Z., Qu, H., Wu, Z., & Wang, X. (2018). Geo3DML: A standard-based exchange format for 3D geological models. Computers & Geosciences, 110, 54-64. https://doi.org/10.1016/j.cageo.2017.09.008

Zakrevskii, K. E. (2009). Geologicheskoe 3D modelirovanie [Geological 3D modeling]. Maska Publishing House.

Zakrevskii, K. E., Maisiuk, D. M., & Syrtlanov, V. R. (2008). Otsenka kachestva 3D modelei [Assessment of the quality of 3D models]. Maska Publishing House.

Zakrevskii, K. E., & Popov, V. L. (2021). Istoriia razvitiia trekhmernogo geologicheskogo modelirovaniia kak metoda izucheniia zalezhei nefti i gaza [The history of development of 3D geology modeling as a method for studying oil and gas reservoirs]. Bulletin of the Tomsk Polytechnic University, 332(5), 89-100.

Published

2023-12-15

How to Cite

Shirjaev, A., Vaganov, Y., & Naumenko, V. (2023). Integration of a Low Gas-Saturated Zone in Creating a 3D Model of the Medvezhye Field. Qubahan Academic Journal, 3(4), 476–488. https://doi.org/10.48161/qaj.v3n4a251

Issue

Section

Articles