Predicting Corporate Profitability in Morocco: Comparing Classical Regression and Machine Learning

Authors

DOI:

https://doi.org/10.48161/qaj.v6n1a1972

Keywords:

profitability, Moroccan companies, machine learning, linear regression, financial performance, predictive modeling.

Abstract

To the best of our knowledge, this study provides the first systematic comparison between classical regression and advanced machine learning models for predicting the profitability of Moroccan firms listed on the Casablanca Stock Exchange. While prior research has largely focused on developed markets, profitability prediction in emerging economies such as Morocco remains underexplored, despite the market’s structural particularities (sectoral concentration, reliance on bank financing, and limited disclosure practices). This article provides the first systematic comparative analysis between regression and machine learning approaches applied to Moroccan listed companies, highlighting the advantages and limitations of each method in capturing complex and non-linear financial dynamics. Using a dataset covering ten years of financial statements, we evaluate multiple models, including OLS, Ridge regression, Random Forest, Gradient Boosting, Support Vector Regression, KNN, and XGBoost. Results show that machine learning models consistently outperform regression in predictive accuracy, while regression retains value in interpretability. Findings contribute to academic research by extending profitability forecasting studies to an under-explored emerging market, and to practice by offering investors, policymakers, and managers tools that improve risk assessment, capital allocation, and decision-making under conditions of uncertainty. These implications are particularly relevant for emerging economies, where informational asymmetries and structural heterogeneity complicate financial forecasting.

Downloads

Download data is not yet available.

References

Nweke, G. I., & Nweke, O. C. (2022). Empowering the workforce in the AI era: Lessons from the UK’s consultative approach for a global legal framework. Beijing Law Review, 13(2), 307–325.

Penman, S., Zhu, J., & Wang, H. (2023). The implied cost of capital: Accounting for growth. Review of Quantitative Finance and Accounting, 61(3), 1029–1056.

Miescu, M. S. (2023). Uncertainty shocks in emerging economies: A global-to-local approach for identification. European Economic Review, 154, 104437.

Kocenda, E. (2022). Bank survival around the world: A meta-analytic review. Journal of Economic Surveys, 36(2), 472–495.

Schroeder, R. G., Clark, M. W., & Cathey, J. M. (2023). Financial accounting theory and analysis: Text and cases (14th ed.). Wiley.

Ling, Y., & Wang, P. P. (2024). Ensemble machine learning models in financial distress prediction: Evidence from China. Journal of Mathematical Finance, 14(2), 185–205.

Chen, J., Liu, Z., & Wang, Y. (2023). Estimating profitability decomposition frameworks via machine learning. The Review of Financial Studies, 36(6), 2781–2812.

Anderson, M. C., Hyun, S., Muslu, V., & Yu, D. (2023). Earnings prediction with DuPont components and calibration by life cycle. Review of Accounting Studies. Forthcoming.

Greene, W. H. (2020). Econometric analysis (8th ed.). Pearson Education.

Combettes, P. L., & Müller, C. L. (2020). Perspective maximum likelihood-type estimation via proximal decomposition. Electronic Journal of Statistics, 14, 207–238.

Drobetz, W., & Otto, T. (2021). Empirical asset pricing via machine learning: Evidence from the European stock market. Journal of Asset Management, 22(7), 507–538.

Pistikou, V., Tsanana, E., & Poufinas, T. (2020). A financial analysis approach on the impact of economic interdependence on interstate conflicts. Open Journal of Applied Sciences, 10(4), 112–126.

Hyndman, R. J., & Athanasopoulos, G. (2021). Forecasting: Principles and practice (3rd ed.).

El Alaoui, A., & Bensaid, A. (2022). Predicting corporate financial performance in emerging markets: Evidence from Morocco using machine learning and regression models. Journal of Emerging Market Finance, 21(3), 345–368.

Abedin, M., & Nguyen, T. (2023). Comparative analysis of regression and machine learning models in profitability forecasting. International Review of Financial Analysis, 88, 102657.

Khan, S., & Shah, S. (2021). Machine learning vs traditional econometric models: Evidence from profitability prediction in Pakistan. Economic Modelling, 99, 105475.

Lundberg, S. M., & Lee, S.-I. (2022). Interpretable machine learning for finance: Explaining predictions with SHAP values. Expert Systems with Applications, 193, 116421.

Barakat, M., & Hussainey, K. (2024). Hybrid modelling approaches in financial performance prediction: Combining linear and non-linear methods. Journal of Forecasting, 43(2), 203–222.

Li, Y., Zhang, H., & Xu, W. (2023). Profitability prediction with macro-financial indicators: Limitations of annual panels and the role of data granularity. Finance Research Letters, 55, 104938.

Ghouali, A., & Benbouziane, M. (2025). Data challenges in emerging markets: Improving profitability forecasts with higher-frequency financial data. Journal of Applied Economics, 28(1), 75–96.

Ferrouhi, E. M., Boushaba, R., & El Alaoui, A. (2024). A comparative study of ensemble learning algorithms for high-frequency data in the Casablanca Stock Exchange. Journal of Computational and Applied Mathematics, 443, 115885.

Ait Lahcen, A., & Amghar, A. (2025). Econometric modeling for proactive risk management of financial failure in Moroccan SMEs. Future Business Journal, 11(1), 63.

Wooldridge, J. M. (2024). Introductory econometrics: A modern approach (8th ed.). Cengage Learning.

Nguyen, J. (2021). Revisit the use of asset turnover and profit margin in forecasting operating profitability: Further evidence. SSRN Working Paper.

Altinay, A. T., Doğan, M., Demirel Ergun, B. L., & Alshiqi, S. (2023). The Fama–French five-factor asset pricing model: A research on Borsa Istanbul. Economic Studies, 4, 3–21.

Chen, X., Cho, Y. H. T., Dou, Y., & Lev, B. (2022). Predicting future earnings changes using machine learning and detailed financial data. Journal of Accounting Research, 60(2), 467–515.

Aighuraibawi, A. H. B., Manickam, S., Abdullah, R., Alyasseri, Z. A. A., Al-Ani, A. K. I., Zebari, D. A., ... & Arif, Z. H. (2023). Feature Selection for Detecting ICMPv6-Based DDoS Attacks Using Binary Flower Pollination Algorithm. Comput. Syst. Sci. Eng., 47(1), 553-574.

Pabuccu, H., & Barbu, A. (2024). Feature selection with annealing for forecasting financial time series. Financial Innovation, 10, Article 87.

Chen, H., Covert, I. C., Lundberg, S. M., & Lee, S.-I. (2023). Algorithms to estimate Shapley value feature attributions. Nature Machine Intelligence, 5(6), 590–601.

Luo, P., Tan, Y., Yang, J., & Yao, Y. (2023). Underinvestment and optimal capital structure under environmental constraints. Journal of Economic Dynamics and Control, 157, 104761.

Afrimadona, S., & Schraufnagel, S. (2023). Testing structural explanations for U.S. military intervention. Open Journal of Political Science, 13(4), 597–615.

Salih, M. S., Zebari, N. A., Masoud, R., & Zebari, D. A. (2025). Deep Transfer Learning and Feature Fusion for Improving Facial Expression Recognition on JAFFE Dataset. Applied Computing Journal.

Chevalier, A., & Lambert, J. (2023). Robust variable selection and estimation via adaptive elastic net. Computational Statistics & Data Analysis, 199, 107483.

Abdulqadir, H. R., Abdulazeez, A. M., & Zebari, D. A. (2021). Data mining classification techniques for diabetes prediction. Qubahan Academic Journal, 1(2), 125-133.

Zebari, D. A., Sulaiman, D. M., Sadiq, S. S., Zebari, N. A., & Salih, M. S. (2022). Automated Detection of Covid-19 from X-ray Using SVM. In 2022 4th International Conference on Advanced Science and Engineering (ICOASE) (pp. 130-135). IEEE.

Géron, A. (2022). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow (3rd ed.). O’Reilly Media.

Rukhsar, S., Awan, M. J., Naseem, U., Zebari, D. A., Mohammed, M. A., Albahar, M. A., ... & Mahmoud, A. (2023). Artificial intelligence based sentence level sentiment analysis of COVID-19. Computer Systems Science and Engineering, 47(1), 791-807.

Wikle, C. K., & Zammit-Mangion, A. (2022). Spatio-temporal statistics with R (2nd ed.). CRC Press.

Nguyen, T. H., Sharma, R. C., Dung, N. V., & Tung, D. X. (2020). Effectiveness of Sentinel-1-2 multi-temporal composite images for land-cover monitoring in the Indochinese Peninsula. Journal of Geoscience and Environment Protection, 8(9), 430–445.

Chang, V. (2024). Prediction of bank credit worthiness through credit risk detection using random forest and gradient boosting models. Annals of Operations Research. Advance online publication.

Stavrakoudis, D., & Gitas, I. Z. (2023). Object-based burned area mapping with extreme gradient boosting using Sentinel-2 imagery. Journal of Geographic Information System, 15(1), 1–15.

McKinney, W. (2022). Python for data analysis (3rd ed.). O’Reilly Media.

Harris, C. R., Millman, K. J., van der Walt, S. J., et al. (2020). Array programming with NumPy. Nature, 585(7825), 357–362.

Rocha, A. E., & Parker, W. D. (2021). pysky: An application for the planning of multi-target astronomical observations. Journal of Applied Mathematics and Physics, 9(11).

Waskom, M. L. (2021). seaborn: Statistical data visualization. Journal of Open Source Software, 6(60), 3021.

Masi, G. S., Nwaogazie, I. L., & Ikebude, C. (2023). Comparative analysis of climatic change trends and change-point analysis. Open Journal of Modern Hydrology, 13(4), Article 45.

Akodia, J. A., Dzidonu, C. K., Boison, D. K., & Kisembe, P. (2022). Application of random search methods in determining learning rate for ANN training. Journal of Computer and Communications, 10(12), 123–134.

Agarwal, A., Kenney, A. M., Tan, Y. S., Tang, T. M., & Yu, B. (2023). MDI+: A flexible random forest-based feature importance framework. arXiv preprint.

Voges, L. F., Jarren, L. C., & Seifert, S. (2023). Opening the random forest black box by analyzing mutual feature impacts. arXiv preprint.

Ahmed, U., Mahmood, A., Tunio, M. A., Hafeez, G., Khan, A. R., & Razzaq, S. (2024). Investigating boosting techniques’ efficacy in feature selection. Energy Reports, 10(4).

Daoui, M. (2023). Macroeconomic forecasting using dynamic factor models: The case of Morocco. arXiv preprint.

Badrane, N., & Bamousse, Z. (2025). Innovative financing solutions: A transformative driver for financial performance of businesses in Morocco. arXiv preprint.

Chniguir, M., & Henchiri, J. E. (2023). Causality between investor sentiment and share returns in the Moroccan and Tunisian financial markets. arXiv preprint.

Kuhn, M., & Johnson, K. (2022). Applied predictive modeling with R (2nd ed.). Springer.

Probst, P., Wright, M. N., & Boulesteix, A.-L. (2021). Hyperparameters and tuning strategies for random forest. WIREs Data Mining and Knowledge Discovery, 11(1), e1403.

Gurnani, V., & Welling, M. (2023). Feature importance in tree-based models: An empirical evaluation. Journal of Machine Learning Research, 24(135), 1–25.

Lundberg, S. M., & Lee, S.-I. (2017). A unified approach to interpreting model predictions. Advances in Neural Information Processing Systems, 30, 4765–4774.

Hunt, T., Brown, A., & Miller, S. (2020). Improving profit forecasts with machine learning. Review of Quantitative Finance and Accounting, 55(4), 987–1012.

Rashid, H., Ahmed, K., & Rehman, A. (2021). Machine learning approaches for predicting future profitability: Evidence from Pakistan. Emerging Markets Review, 46, 100752.

Fernández-Laviada, A., Herrero, I., & Pérez, A. (2022). Identifying profitability factors through explainable artificial intelligence. Journal of Business Research, 145, 35–47.

Dutta, S., Bose, I., & Sengupta, A. (2021). Predictive AI for SMEs and large enterprises. Information Systems Frontiers, 23(5), 1123–1140.

Abdallah, W., Mardini, G., & Moussa, G. (2020). Machine learning versus OLS for profitability prediction in GCC firms. International Review of Economics & Finance, 69, 750–764.

Nguyen, T., & Tran, M. (2021). Machine learning models for profitability prediction: Evidence from Vietnam. Asia-Pacific Journal of Accounting & Economics, 28(3), 367–389.

Silva, R., Santos, J., & Oliveira, P. (2022). Machine learning methods for profitability forecasting of Brazilian SMEs. Journal of Applied Economics, 25(1), 110–128.

Krauss, C., & Rösch, D. (2023). Hybrid econometric–machine learning models for financial performance prediction in European firms. European Journal of Operational Research, 310(2), 642–655.

Published

2026-01-18

How to Cite

Jamil, Y., EL Yamlahi , I. ., & Bouayad Amine , N. . (2026). Predicting Corporate Profitability in Morocco: Comparing Classical Regression and Machine Learning. Qubahan Academic Journal, 6(1), 164–193. https://doi.org/10.48161/qaj.v6n1a1972

Issue

Section

Articles