Medical Images Segmentation Based on Unsupervised Algorithms: A Review


  • Revella E. A. Armya Technical College of Informatics Duhok Polytechnic University Duhok, Iraq
  • Adnan Mohsin Abdulazeez Presidency of Duhok Polytechnic University Duhok Polytechnic University Duhok, Iraq



Medical Images, Segmentation, Partition Around Medoids, K-means, Feature Selection


Medical image segmentation plays an essential role in computer-aided diagnostic systems in various applications. Therefore, researchers are attracted to apply new algorithms for medical image processing because it is a massive investment in developing medical imaging methods such as dermatoscopy, X-rays, microscopy, ultrasound, computed tomography (CT), positron emission tomography, and magnetic resonance imaging. (Magnetic Resonance Imaging), So segmentation of medical images is considered one of the most important medical imaging processes because it extracts the field of interest from the Return on investment (ROI) through an automatic or semi-automatic process. The medical image is divided into regions based on the specific descriptions, such as tissue/organ division in medical applications for border detection, tumor detection/segmentation, and comprehensive and accurate detection. Several methods of segmentation have been proposed in the literature, but their efficacy is difficult to compare. To better address, this issue, a variety of measurement standards have been suggested to decide the consistency of the segmentation outcome. Unsupervised ranking criteria use some of the statistics in the hash score based on the original picture. The key aim of this paper is to study some literature on unsupervised algorithms (K-mean, K-medoids) and to compare the working efficiency of unsupervised algorithms with different types of medical images.


Download data is not yet available.


Z. Li, M. Dong, S. Wen, X. Hu, P. Zhou, and Z. Zeng, “CLU-CNNs: Object detection for medical images,” Neurocomputing, vol. 350, pp. 53–59, 2019, doi: 10.1016/j.neucom.2019.04.028.

A. Gandhamal, S. Talbar, S. Gajre, A. F. M. Hani, and D. Kumar, “Local gray level S-curve transformation – A generalized contrast enhancement technique for medical images,” Comput. Biol. Med., vol. 83, pp. 120–133, 2017, doi: 10.1016/j.compbiomed.2017.03.001.

P. Kumar and D. Sirohi, “Comparative analysis of FCM and HCM algorithm on Iris data set,” Int. J. Comput. Appl., vol. 5, no. 2, pp. 33–37, 2010, doi: 10.5120/888-1261.

D. Q. Zeebaree, H. Haron, A. M. Abdulazeez, and D. A. Zebari, “Machine learning and Region Growing for Breast Cancer Segmentation,” 2019 Int. Conf. Adv. Sci. Eng. ICOASE 2019, pp. 88–93, 2019, doi: 10.1109/ICOASE.2019.8723832.

M. A. Mohammed, B. Al-Khateeb, A. N. Rashid, D. A. Ibrahim, M. K. Abd Ghani, and S. A. Mostafa, “Neural network and multi-fractal dimension features for breast cancer classification from ultrasound images,” Comput. Electr. Eng., vol. 70, pp. 871–882, 2018, doi: 10.1016/j.compeleceng.2018.01.033.

M. Mustra, M. Grgic, and R. M. Rangayyan, “Review of recent advances in segmentation of the breast boundary and the pectoral muscle in mammograms,” Med. Biol. Eng. Comput., vol. 54, no. 7, pp. 1003–1024, 2016, doi: 10.1007/s11517-015-1411-7.


J. P. Coles, “Imaging after brain injury,” Br. J. Anaesth., vol. 99, no. 1, pp. 49–60, 2007, doi: 10.1093/bja/aem141.

W. J. Powers et al., 2018 Guidelines for the Early Management of Patients With Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association, vol. 49, no. 3. 2018.

W. K. Erly, W. G. Berger, E. Krupinski, J. F. Seeger, and J. A. Guisto, “Radiology resident evaluation of head CT scan orders in the emergency department,” Am. J. Neuroradiol., vol. 23, no. 1, pp. 103–107, 2002.

S. Asgari Taghanaki, K. Abhishek, J. P. Cohen, J. Cohen-Adad, and G. Hamarneh, Deep semantic segmentation of natural and medical images: a review, no. 0123456789. Springer Netherlands, 2020.

A. C. Study, “Segmentation of Leukemia Cells Using Clustering :,” vol. 10, no. 2, pp. 39–48, 2019, doi: 10.4018/IJSE.2019070103.

B. J. Erickson, P. Korfiatis, Z. Akkus, and T. L. Kline, “Machine learning for medical imaging,” Radiographics, vol. 37, no. 2, pp. 505–515, 2017, doi: 10.1148/rg.2017160130.

D. M. Abdullah and N. S. Ahmed, “A Review of most Recent Lung Cancer Detection Techniques using Machine Learning,” pp. 159–173, 2021, doi: 10.5281/zenodo.4536818.

D. M. Sulaiman, A. M. Abdulazeez, H. Haron, and S. S. Sadiq, “Unsupervised Learning Approach-Based New Optimization K-Means Clustering for Finger Vein Image Localization,” 2019 Int. Conf. Adv. Sci. Eng. ICOASE 2019, pp. 82–87, 2019, doi: 10.1109/ICOASE.2019.8723749.

V. Pattabiraman, R. Parvathi, R. Nedunchezhian, and S. Palaniammal, “A novel spatial clustering with obstacles and facilitators constraint based on edge deduction and K-Mediods,” ICCTD 2009 - 2009 Int. Conf. Comput. Technol. Dev., vol. 1, pp. 402–406, 2009, doi: 10.1109/ICCTD.2009.92.

M. H. J. and P. Jian and Kamber, “Data Mining Techniques, Third Edition,” p. 847, 2011.

K. Singh, D. Malik, and N. Sharma, “Evolving limitations in K-means algorithm in data mining and their removal,” IJCEM Int. J. Comput. Eng. Manag. ISSN, vol. 12, no. April, pp. 2230–7893, 2011, [Online]. Available:

M. H. Kondarasaiah and S. Ananda, Kinetic and mechanistic study of Ru(III)-nicotinic acid complex formation by oxidation of bromamine-T in acid solution, vol. 27, no. 1. 2004.

T. Velmurugan, “A State of Art Analysis of Telecommunication Data by k-Means and k-Medoids Clustering Algorithms,” J. Comput. Commun., vol. 06, no. 01, pp. 190–202, 2018, doi: 10.4236/jcc.2018.61019.

C. Ordonez and S. Diego, “Clustering Binary Data Streams with K-means.pdf,” 2003.

T. Santhanam and T. Velmurugan, “Computational Complexity between K-Means and K-Medoids Clustering Algorithms for Normal and Uniform Distributions of Data Points,” J. Comput. Sci., vol. 6, no. 3, pp. 363–368, 2010.

X. Wang, Y. Peng, L. Lu, Z. Lu, M. Bagheri, and R. M. Summers, “ChestX-ray: Hospital-Scale Chest X-ray Database and Benchmarks on Weakly Supervised Classification and Localization of Common Thorax Diseases,” Adv. Comput. Vis. Pattern Recognit., pp. 369–392, 2019, doi: 10.1007/978-3-030-13969-8_18.

M. Grewal, M. M. Srivastava, P. Kumar, and S. Varadarajan, “RADnet: Radiologist level accuracy using deep learning for hemorrhage detection in CT scans,” Proc. - Int. Symp. Biomed. Imaging, vol. 2018-April, pp. 281–284, 2018, doi: 10.1109/ISBI.2018.8363574.

D. M. Abdulqader, A. M. Abdulazeez, and D. Q. Zeebaree, “Machine learning supervised algorithms of gene selection: A review,” Technol. Reports Kansai Univ., vol. 62, no. 3, pp. 233–244, 2020.

V. Gulshan et al., “Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs,” JAMA - J. Am. Med. Assoc., vol. 316, no. 22, pp. 2402–2410, 2016, doi: 10.1001/jama.2016.17216.

J. Ko et al., “Dermatologist-level classification of skin cancer with deep neural networks,” Nature, vol. 542, no. 7639, pp. 115–118, 2017, [Online]. Available:

P. Rajpurkar et al., “CheXNet: Radiologist-level pneumonia detection on chest X-rays with deep learning,” arXiv, pp. 3–9, 2017.

M. Anthimopoulos, S. Christodoulidis, L. Ebner, A. Christe, and S. Mougiakakou, “Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network,” IEEE Trans. Med. Imaging, vol. 35, no. 5, pp. 1207–1216, 2016, doi: 10.1109/TMI.2016.2535865.

J. Z. Cheng et al., “Computer-Aided Diagnosis with Deep Learning Architecture: Applications to Breast Lesions in US Images and Pulmonary Nodules in CT Scans,” Sci. Rep., vol. 6, no. April, pp. 1–13, 2016, doi: 10.1038/srep24454.

A. Prasoon, K. Petersen, C. Igel, F. Lauze, E. Dam, and M. Nielsen, “Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 8150 LNCS, no. PART 2, pp. 246–253, 2013, doi: 10.1007/978-3-642-40763-5_31.

J. Patravali, S. Jain, and S. Chilamkurthy, “2D-3D fully convolutional neural networks for cardiac MR segmentation,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 10663 LNCS, pp. 130–139, 2018, doi: 10.1007/978-3-319-75541-0_14.

X. W. Gao, R. Hui, and Z. Tian, “Classification of CT brain images based on deep learning networks,” Comput. Methods Programs Biomed., vol. 138, pp. 49–56, 2017, doi: 10.1016/j.cmpb.2016.10.007.

G. Chandrashekar and F. Sahin, “A survey on feature selection methods,” Comput. Electr. Eng., vol. 40, no. 1, pp. 16–28, 2014, doi: 10.1016/j.compeleceng.2013.11.024.

M. J. Masnan et al., “Understanding Mahalanobis distance criterion for feature selection,” AIP Conf. Proc., vol. 1660, no. May, 2015, doi: 10.1063/1.4915708.

F. A. M. Bargarai, A. M. Abdulazeez, V. M. Tiryaki, and D. Q. Zeebaree, “Management of wireless communication systems using artificial intelligence-based software defined radio,” Int. J. Interact. Mob. Technol., vol. 14, no. 13, pp. 107–133, 2020, doi: 10.3991/ijim.v14i13.14211.

R. Zebari, A. Abdulazeez, D. Zeebaree, D. Zebari, and J. Saeed, “A Comprehensive Review of Dimensionality Reduction Techniques for Feature Selection and Feature Extraction,” J. Appl. Sci. Technol. Trends, vol. 1, no. 2, pp. 56–70, 2020, doi: 10.38094/jastt1224.

G. Litjens et al., “A survey on deep learning in medical image analysis,” Med. Image Anal., vol. 42, no. December 2012, pp. 60–88, 2017, doi: 10.1016/

M. Muhammad, D. Zeebaree, A. M. A. Brifcani, J. Saeed, and D. A. Zebari, “A Review on Region of Interest Segmentation Based on Clustering Techniques for Breast Cancer Ultrasound Images,” J. Appl. Sci. Technol. Trends, vol. 1, no. 3, pp. 78–91, 2020, doi: 10.38094/jastt1328.

D. Qader Zeebaree, A. Mohsin Abdulazeez, D. Asaad Zebari, H. Haron, and H. Nuzly Abdull Hamed, “Multi-Level Fusion in Ultrasound for Cancer Detection based on Uniform LBP Features,” Comput. Mater. Contin., vol. 66, no. 3, pp. 3363–3382, 2021, doi: 10.32604/cmc.2021.013314.

R. K. Bhathena, “Fast Facts: Contraception 3rd edition,” J. Obstet. Gynaecol. (Lahore)., vol. 30, no. 8, pp. 887–887, 2010, doi: 10.3109/01443615.2010.517118.

D. A. Zebari, D. Q. Zeebaree, A. M. Abdulazeez, H. Haron, and H. N. A. Hamed, “Improved Threshold Based and Trainable Fully Automated Segmentation for Breast Cancer Boundary and Pectoral Muscle in Mammogram Images,” IEEE Access, vol. 8, pp. 203097–203116, 2020, doi: 10.1109/access.2020.3036072.

I. A. Lbachir, R. Es-Salhi, I. Daoudi, and S. Tallal, “A new mammogram preprocessing method for computer-aided diagnosis systems,” Proc. IEEE/ACS Int. Conf. Comput. Syst. Appl. AICCSA, vol. 2017-Octob, pp. 166–171, 2018, doi: 10.1109/AICCSA.2017.40.

N. K. Student, “K-Means Clustering,” 2017 Int. Conf. Energy, Commun. Data Anal. Soft Comput., pp. 1861–1865, 2017.

W. D. Kadhim and R. S. Abdoon, “Utilizing k-means clustering to extract bone tumor in CT scan and MRI images,” J. Phys. Conf. Ser., vol. 1591, no. 1, 2020, doi: 10.1088/1742-6596/1591/1/012010.

S. Gupta, S. N. Singh, and D. Kumar, “Clustering methods applied for gene expression data: A study,” Proc. - 2016 2nd Int. Conf. Comput. Intell. Commun. Technol. CICT 2016, pp. 724–728, 2016, doi: 10.1109/CICT.2016.149.

N. Najat and A. M. Abdulazeez, “Gene clustering with partition around mediods algorithm based on weighted and normalized mahalanobis distance,” ICIIBMS 2017 - 2nd Int. Conf. Intell. Informatics Biomed. Sci., vol. 2018-Janua, pp. 140–145, 2018, doi: 10.1109/ICIIBMS.2017.8279707.

L. F. Ibrahim, “Using Modified Partitioning Around Medoids Clustering Technique in Mobile Network Planning,” Int. J. Comput. Sci. Issues, vol. 9, no. 6, pp. 299–308, 2012.

K. L. and R. P., “Clustering by means of Medoids,” Statistical Data Analysis Based on the L1 Norm and Related Methods. pp. 405–416, 1987.

A. Bhat, “K-Medoids Clustering Using Partitioning Around Medoids for Performing Face Recognition,” Int. J. Soft Comput. Math. Control, vol. 3, no. 3, pp. 1–12, 2014, doi: 10.14810/ijscmc.2014.3301.

E. Zhou, S. Mao, M. Li, and Z. Sun, “PAM spatial clustering algorithm research based on CUDA,” Int. Conf. Geoinformatics, vol. 2016-Septe, 2016, doi: 10.1109/GEOINFORMATICS.2016.7578971.

L. F. Ibrahim and M. H. Al Harbi, “Using clustering technique M-PAM in mobile network planning,” 12th WSEAS Int. Conf. Comput., pp. 868–873, 2008, [Online]. Available:

T. Velmurugan and T. Santhanam, “Performance Analysis Of K-Means And K- Medoids Clustering Algorithms For A Randomly Generated Data Set,” Int. Conf. Syst. Cybern. Informatics, no. November, pp. 578–583, 2016, [Online]. Available:

R. C. De Amorim and T. Fenner, “Weighting features for partition around medoids using the minkowski metric,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 7619 LNCS, pp. 35–44, 2012, doi: 10.1007/978-3-642-34156-4_5.

R. C. de Amorim, “A Survey on Feature Weighting Based K-Means Algorithms,” J. Classif., vol. 33, no. 2, pp. 210–242, 2016, doi: 10.1007/s00357-016-9208-4.

H. S. Park, J. S. Lee, and C. H. Jun, “A k-means-like algorithm for k-medoids clustering and its performance,” 36th Int. Conf. Comput. Ind. Eng. ICC IE 2006, pp. 1222–1231, 2006.

D. Bhukya, S. Ramachandram, and R. Sony A L, “Performance evaluation of partition based clustering algorithms in grid environment Using design of experiments,” Int. J. Rev. Comput., pp. 46–53, 2010.

A. Abraham, International Symposium on Distributed Computing and Artificial Intelligence. 2011.

I. M. Najim Adeen, A. M. Abdulazeez, and D. Q. Zeebaree, “Systematic review of unsupervised genomic clustering algorithms techniques for high dimensional datasets,” Technol. Reports Kansai Univ., vol. 62, no. 3, pp. 355–374, 2020.

D. Q. Zeebaree, H. Haron, A. M. Abdulazeez, and S. R. M. Zeebaree, “Combination of k-means clustering with genetic algorithm: A review,” Int. J. Appl. Eng. Res., vol. 12, no. 24, pp. 14238–14245, 2017.

A. K. Jain, “Data clustering: 50 years beyond K-means,” Pattern Recognit. Lett., vol. 31, no. 8, pp. 651–666, 2010, doi: 10.1016/j.patrec.2009.09.011.

S. Hansen et al., “Unsupervised supervoxel-based lung tumor segmentation across patient scans in hybrid PET/MRI,” Expert Syst. Appl., vol. 167, no. September 2020, 2021, doi: 10.1016/j.eswa.2020.114244.

C. Series, “Detection of Alzheimer ’ s disease with segmentation approach using K- Means Clustering and Watershed Method of MRI image Detection of Alzheimer ’ s disease with segmentation approach using K-Means Clustering and Watershed Method of MRI,” 2021, doi: 10.1088/1742-6596/1725/1/012009.

L. Rundo et al., “Tissue-specific and interpretable sub-segmentation of whole tumour burden on CT images by unsupervised fuzzy clustering,” Comput. Biol. Med., vol. 120, no. April, p. 103751, 2020, doi: 10.1016/j.compbiomed.2020.103751.

P. G. YILMAZ and G. ÖZMEN, “Follicle Detection for Polycystic Ovary Syndrome by using Image Processing Methods,” Int. J. Appl. Math. Electron. Comput., vol. 8, no. 4, pp. 203–208, 2020, doi: 10.18100/ijamec.803400.

I. H. Aboughaleb, M. H. Aref, and Y. H. El-Sharkawy, “Hyperspectral imaging for diagnosis and detection of ex-vivo breast cancer,” Photodiagnosis Photodyn. Ther., vol. 31, no. April, p. 101922, 2020, doi: 10.1016/j.pdpdt.2020.101922.

P. K. B. Rangaiah et al., “Clustering of Dielectric and Colour Profiles of an Ex-vivo Burnt Human Skin Sample,” 14th Eur. Conf. Antennas Propagation, EuCAP 2020, 2020, doi: 10.23919/EuCAP48036.2020.9136005.

H. Tai, M. Khairalseed, and K. Hoyt, “Adaptive attenuation correction during H-scan ultrasound imaging using K-means clustering,” Ultrasonics, vol. 102, no. June, p. 105987, 2020, doi: 10.1016/j.ultras.2019.105987.

R. Agrawal, M. Sharma, and B. K. Singh, “Segmentation of Brain Lesions in MRI and CT Scan Images: A Hybrid Approach Using k-Means Clustering and Image Morphology,” J. Inst. Eng. Ser. B, vol. 99, no. 2, pp. 173–180, 2018, doi: 10.1007/s40031-018-0314-z.

D. Borys, P. Bzowski, M. Danch-Wierzchowska, and K. Psiuk-Maksymowicz, “Comparison of k-means related clustering methods for nuclear medicine images segmentation,” Ninth Int. Conf. Mach. Vis. (ICMV 2016), vol. 10341, no. Icmv 2016, p. 1034118, 2017, doi: 10.1117/12.2268825.

N. K. Student, “K-Means Clustering,” pp. 1861–1865, 2017.

P. Sarker, M. M. H. Shuvo, Z. Hossain, and S. Hasan, “Segmentation and classification of lung tumor from 3D CT image using K-means clustering algorithm,” 4th Int. Conf. Adv. Electr. Eng. ICAEE 2017, vol. 2018-Janua, pp. 731–736, 2017, doi: 10.1109/ICAEE.2017.8255451.

S. Yin, Y. Qian, and M. Gong, “Unsupervised hierarchical image segmentation through fuzzy entropy maximization,” Pattern Recognit., vol. 68, pp. 245–259, 2017, doi: 10.1016/j.patcog.2017.03.012.

J. Yu, D. Huang, and Z. Wei, “Unsupervised image segmentation via Stacked Denoising Auto-encoder and hierarchical patch indexing,” Signal Processing, vol. 143, pp. 346–353, 2018, doi: 10.1016/j.sigpro.2017.07.009.

A. Dharmarajan and T. Velmurugan, “Efficiency of k-Means and k-Medoids Clustering Algorithms using Lung Cancer Dataset,” Int. J. Data Min. Tech. Appl., vol. 5, no. 2, pp. 150–156, 2016, doi: 10.20894/ijdmta.

A. A. Pravitasari et al., “Gaussian Mixture Model for MRI Image Segmentation to Build a Three-Dimensional Image on Brain Tumor Area,” Matematika, vol. 36, no. 3, pp. 217–234, 2020, doi: 10.11113/matematika.v36.n3.1222.

M. Kalra, M. Osadebey, N. Bouguila, M. Pedersen, and W. Fan, Online Variational Learning for Medical Image Data Clustering. 2020.

K. Atrey, B. K. Singh, A. Roy, and N. K. Bodhey, “Breast cancer detection and validation using dual modality imaging,” 2020 1st Int. Conf. Power, Control Comput. Technol. ICPC2T 2020, pp. 454–458, 2020, doi: 10.1109/ICPC2T48082.2020.9071501.



How to Cite

E. A. Armya, R., & Mohsin Abdulazeez, A. . (2021). Medical Images Segmentation Based on Unsupervised Algorithms: A Review. Qubahan Academic Journal, 1(2), 71–80.




Most read articles by the same author(s)