Improvement of Network Traffic Prediction in Beyond 5G Network using Sparse Decomposition and BiLSTM Neural Network
DOI:
https://doi.org/10.48161/qaj.v5n2a1690Abstract
Companies providing telecommunication services, especially in Beyond 5G networks, are increasingly interested in traffic forecasting to improve the services provided to their users. However, forecasting network traffic is challenging due to traffic data's dynamic and non-stationary nature. This study proposes an effective deep learning-based traffic prediction technique using BiLSTM (Bidirectional Long Short-Term Memory). The proposed method begins with preprocessing using K-SVD (K-means Singular Value Decomposition) to reduce dimensionality and enhance data representation. Next, sparse feature extraction is performed using Discrete Wavelet Transform (DWT), and a sparse matrix is constructed. A Genetic Algorithm (GA) is used to optimize the sparse matrix, which effectively selects the most significant features for prediction. The optimized sparse matrix is fed into the BiLSTM model for accurate traffic forecasting. Experimental results show that the proposed method significantly reduces Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean Squared Error (RMSE) while achieving higher accuracy (ACC) compared to traditional neural networks. The results demonstrate that the proposed sparse matrix, integrated with BiLSTM, provides superior prediction accuracy and better generalization, making it a robust solution for network traffic forecasting in Beyond 5G networks.
Downloads
References
Nabi, S. T., Ahmed, M., Alshehri, S., & Khan, M. A. (2023). Deep learning based fusion model for multivariate LTE traffic forecasting and optimized radio parameter estimation. IEEE Access, 11, 14533–14549.
Elsayed, E. E., Kassem, A. M., & Farag, A. A. (2024). Coding techniques for diversity enhancement of dense wavelength division multiplexing MIMO‐FSO fault protection protocols systems over atmospheric turbulence channels. IET Optoelectronics, 18(1–2), 11–31.
Jubair, M. A., Mostafa, S. A., Zebari, D. A., Hariz, H. M., Abdulsattar, N. F., Hassan, M. H., ... & Alouane, M. T. H. (2022). A QoS aware cluster head selection and hybrid cryptography routing protocol for enhancing efficiency and security of VANETs. IEEE Access, 10, 124792-124804.
Koursioumpas, N., Magoula, L., Barmpounakis, S., & Stavrakakis, I. (2022). Network traffic anomaly prediction for beyond 5G networks. In 2022 IEEE 33rd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC) (pp. 589–594). IEEE.
Jaffry, S., & Hasan, S. F. (2020). Cellular traffic prediction using recurrent neural networks. In 2020 IEEE 5th International Symposium on Telecommunication Technologies (ISTT) (pp. 94–98). IEEE.
Ahmed, F. Y., Masli, A. A., Khassawneh, B., Yousif, J. H., & Zebari, D. A. (2023). Optimized Downlink Scheduling over LTE Network Based on Artificial Neural Network. Computers, 12(9), 179.
Ma, H., Yang, K., & Pun, M.‐O. (2023). Cellular traffic prediction via deep state space models with attention mechanism. Computer Communications, 197, 276–283.
Nikravesh, A. Y., Ajila, S. A., Lung, C.‐H., & Ding, W. (2016). Mobile network traffic prediction using MLP, MLPWD, and SVM. In 2016 IEEE International Congress on Big Data (BigData Congress) (pp. 402–409). IEEE.
Sadeghi, R., Barraca, J. P., & Aguiar, R. L. (2017). A survey on cooperative MAC protocols in IEEE 802.11 wireless networks. Wireless Personal Communications, 95, 1469–1493.
Shi, J., Leau, Y. B., Li, K., & Obit, J. H. (2021). A comprehensive review on hybrid network traffic prediction model. International Journal of Electrical and Computer Engineering, 11(2), 1450.
Harouni, M., Karimi, M., Nasr, A., Mahmoudi, H., & Najafabadi, Z. A. (2022). Health monitoring methods in heart diseases based on data mining approach: A directional review. In Prognostic Models in Healthcare: AI and Statistical Approaches (pp. 115–159). Springer.
Xu, S., & Zeng, B. (2014). Network traffic prediction model based on auto‐regressive moving average. Journal of Networks, 9(3), 653.
Wei, D., & Liu, H. (2013). An adaptive‐margin support vector regression for short‐term traffic flow forecast. Journal of Intelligent Transportation Systems, 17(4), 317–327.
Cai, Y., Cheng, P., Ding, M., Chen, Y., Li, Y., & Vucetic, B. (2020). Spatiotemporal Gaussian process Kalman filter for mobile traffic prediction. In 2020 IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications (pp. 1–6). IEEE.
Elsisi, M., Rusidi, A. L., Tran, M.‐Q., Su, C.‐L., & Ali, M. N. (2024). Robust indoor positioning of automated guided vehicles in Internet of Things networks with deep convolution neural network considering adversarial attacks. IEEE Transactions on Vehicular Technology.
Aouedi, O., Le, V. A., Piamrat, K., & Ji, Y. (2025). Deep learning on network traffic prediction: Recent advances, analysis, and future directions. ACM Computing Surveys, 57(6), 1–37.
Kavehmadavani, F., Nguyen, V.‐D., Vu, T. X., & Chatzinotas, S. (2023). Intelligent traffic steering in beyond 5G open RAN based on LSTM traffic prediction. IEEE Transactions on Wireless Communications, 22(11), 7727–7742.
Crone, S. F., Hibon, M., & Nikolopoulos, K. (2011). Advances in forecasting with neural networks? Empirical evidence from the NN3 competition on time series prediction. International Journal of Forecasting, 27(3), 635–660.
Wang, L., Hu, J., Jiang, D., Zhang, C., Jiang, R., & Chen, Z. (2024). Deep learning models for spectrum prediction: A review. IEEE Sensors Journal.
Chowdhury, S. (2024). LSTM‐oriented handover decision‐making with SVR‐based mobility prediction in 5G vehicular networks. (Unpublished manuscript).
Alizadeh Aliabadi, M., Karimi, M., Karimi, Z., & Soheili Fard, M. (2025). The effect of photoplethysmography signal denoising on compression quality. Iranian Journal of Electrical and Electronic Engineering, 21(1), 3277.
Mathur, S., Chaba, Y., & Noliya, A. (2023). Performance analysis of support vector machine learning based carrier aggregation resource scheduling in 5G mobile communication. Procedia Computer Science, 218, 2776–2785.
Kaci, A., & Rachedi, A. (2021). Named data networking architecture for Internet of Vehicles in the era of 5G. Annals of Telecommunications, 76(9), 717–729.
Rehman, A., Harouni, M., Zogh, F., Saba, T., Karimi, M., & Jeon, G. (2023). Detection of lung tumors in CT scan images using convolutional neural networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics.
Asgarnezhad, R., Alhameedawi, K. A. M., & Mahfoud, H. A. (2023). An effective model of autism spectrum disorder using machine learning. Indonesian Journal of Electrical and Electronic Engineering (IJEEI), 11(2), 389–401.
Emadi, M., Jafarian Dehkordi, Z., & Iranpour Mobarakeh, M. (2023). Improving the accuracy of brain tumor identification in magnetic resonance imaging using super‐pixel and fast primal dual algorithm. International Journal of Engineering, 36(3), 505–512.
Islam, M. A., Siddique, H., Zhang, W., & Haque, I. (2022). A deep neural network‐based communication failure prediction scheme in 5G RAN. IEEE Transactions on Network and Service Management, 20(2), 1140–1152.
Raftarai, A., Mahounaki, R. R., Harouni, M., Karimi, M., & Olghoran, S. K. (2021). Predictive models of hospital readmission rate using the improved AdaBoost in COVID‐19. In Intelligent Computing Applications for COVID‐19 (pp. 67–86). CRC Press.
Li, L., Zhao, Y., Wang, J., & Zhang, C. (2023). Wireless traffic prediction based on a gradient similarity federated aggregation algorithm. Applied Sciences, 13(6), 4036.
Haider, U., Waqas, M., Hanif, M., Alasmary, H., & Qaisar, S. M. (2023). Network load prediction and anomaly detection using ensemble learning in 5G cellular networks. Computer Communications, 197, 141–150.
Moghadas Gholian, S., Fiandrino, C., Collet, A., Attanasio, G., Fiore, M., & Widmer, J. (2023). Spotting deep neural network vulnerabilities in mobile traffic forecasting with an explainable AI lens. In IEEE International Conference on Computer Communications.
Gao, Z. (2022). 5G traffic prediction based on deep learning. Computational Intelligence and Neuroscience, 2022, Article 2022.
Wang, W., Zhou, C., He, H., Wu, W., Zhuang, W., & Shen, X. (2020). Cellular traffic load prediction with LSTM and Gaussian process regression. In ICC 2020—2020 IEEE International Conference on Communications (ICC) (pp. 1–6). IEEE.
Zhang, C., Zhang, H., Yuan, D., & Zhang, M. (2018). Citywide cellular traffic prediction based on densely connected convolutional neural networks. IEEE Communications Letters, 22(8), 1656–1659.
Zhao, N., Ye, Z., Pei, Y., Liang, Y.‐C., & Niyato, D. (2020). Spatial‐temporal attention‐convolution network for citywide cellular traffic prediction. IEEE Communications Letters, 24(11), 2532–2536.
Song, C., et al. (2018). Machine learning enabling traffic‐aware dynamic slicing for 5G optical transport networks. In CLEO: Science and Innovations (p. JTu2A.44). Optica Publishing Group.
Sun, P., Aljeri, N., & Boukerche, A. (2020). Machine learning‐based models for real‐time traffic flow prediction in vehicular networks. IEEE Network, 34(3), 178–185.
Clemente, D., Soares, G., Fernandes, D., Cortesao, R., Sebastiao, P., & Ferreira, L. S. (2019). Traffic forecast in mobile networks: Classification system using machine learning. In 2019 IEEE 90th Vehicular Technology Conference (VTC2019‐Fall) (pp. 1–5). IEEE.
Yaghoubi, F., Catovic, A., Gusmao, A., Pieczkowski, J., & Boros, P. (2021). Traffic flow estimation using LTE radio frequency counters and machine learning. arXiv preprint arXiv:2101.09143.
Jiang, W., Mu, J., Han, H., Zhang, Y., & Huang, S. (n.d.). Federated learning‐based mobile traffic prediction in satellite‐terrestrial integrated networks. Software: Practice and Experience.
Jiang, W., Zhang, Y., Han, H., Huang, Z., Li, Q., & Mu, J. (2024). Mobile traffic prediction in consumer applications: A multimodal deep learning approach. IEEE Transactions on Consumer Electronics, 70(1), 3425–3435.
Lai, J., et al. (2023). Deep learning based traffic prediction method for digital twin network. Cognitive Computation, 1–19.
Amiri, P. A. D., & Pierre, S. (2023). An ensemble‐based machine learning model for forecasting network traffic in VANET. IEEE Access, 11, 22855–22870.
Alsaade, F. W., & Al‐Adhaileh, M. H. (2021). Cellular traffic prediction based on an intelligent model. Mobile Information Systems, 2021, Article 2021.
Wang, Z., Hu, J., Min, G., Zhao, Z., & Wang, J. (2020). Data‐augmentation‐based cellular traffic prediction in edge‐computing‐enabled smart city. IEEE Transactions on Industrial Informatics, 17(6), 4179–4187.
Wang, H., & Du, W. (2020). A new K‐means singular value decomposition method based on self‐adaptive matching pursuit and its application in fault diagnosis of rolling bearing weak fault. International Journal of Distributed Sensor Networks, 16(5), 1550147720920781.
Wu, Q., & Zhao, X. (2018). Traffic time series prediction based on CS and SVR. In 2018 Chinese Control And Decision Conference (CCDC) (pp. 3427–3432). IEEE.
Papazoglou, G., & Biskas, P. (2023). Review and comparison of genetic algorithm and particle swarm optimization in the optimal power flow problem. Energies, 16(3), 1152.
Huang, Y., Qian, L., Feng, A., Yu, N., & Wu, Y. (2019). Short‐term traffic prediction by two‐level data driven model in 5G‐enabled edge computing networks. IEEE Access, 7, 123981–123991.
Hassan, M. K., Ariffin, S. H. S., Syed‐Yusof, S. K., Ghazali, N. E., Kanona, M. E. A., & Rava, M. (2022). Smoothing‐aided long‐short term memory neural network‐based LTE network traffic forecasting. International Journal of Electrical and Computer Engineering, 12(6), 6859.
Abhishek, & Verma, S. (2021). Machine learning in 5G wireless networks. In 5G and Beyond Wireless Systems: PHY Layer Perspective (pp. 391–410).
Lohrasbinasab, I., Shahraki, A., Taherkordi, A., & Jurcut, A. D. (2022). From statistical‐ to machine learning‐based network traffic prediction. Transactions on Emerging Telecommunications Technologies, 33(4), e4394.
Perveen, A., Abozariba, R., Patwary, M., & Aneiba, A. (2023). Dynamic traffic forecasting and fuzzy‐based optimized admission control in federated 5G‐Open RAN networks. Neural Computing and Applications, 35(33), 23841–23859.
Idowu‐Bismark, O., Kennedy, O., Husbands, R., & Adedokun, M. (2019). 5G wireless communication network architecture and its key enabling technologies. International Journal of Distributed Sensor Networks, 12, 70–82.
Wang, H., & Du, W. (2020). A new K‐means singular value decomposition method based on self‐adaptive matching pursuit and its application in fault diagnosis of rolling bearing weak fault. International Journal of Distributed Sensor Networks, 16(5), 1550147720920781.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Qubahan Academic Journal

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.