Ovarian Tumor Detection Using Machine Learning Algorithms and Local Texture Features
DOI:
https://doi.org/10.48161/qaj.v5n3a2064Keywords:
ovarian cancer tumor, ultrasound imaging, hierarchical feature selection, deep learning features, texture features, metaheuristic algorithms.Abstract
Ovarian cancer (OC) is considered the fifth leading cause of death among women globally, and early detection of ovarian cancer symptoms will be vital for ovarian cancer treatment. Its detection via image-based clinical diagnosis is often prone to misclassification. Therefore, this study proposes using machine learning methods to reduce such errors and deliver faster and more accurate results. Two ovarian tumor datasets consisting of ultrasound images were analyzed using nine machine learning classification algorithms. To reduce the extracted features derived from four pre-trained convolutional networks and five texture-based features to fewer than 50. A hierarchical feature selection method was proposed, combining the ReliefF filter algorithm in the first stage and ten metaheuristic algorithms in the second stage. The results showed that ensemble algorithms, such as LightGBM, achieved a high accuracy of over 95% in diagnosing various types of ovarian tumors using both 2D and 3D ultrasound images. Among the feature selection approaches, the combination of ReliefF and Quantum Approximate Neighbourhood Analysis (QANA) yielded the best performance. Experimental findings on real datasets show that the suggested method not only preserves data confidentiality but also yields excellent performance in early and precise detection of OC.
Downloads
References
Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians, 71(3), 209-249.
Saida, T., Mori, K., Hoshiai, S., Sakai, M., Urushibara, A., Ishiguro, T., Minami, M., Satoh, T., & Nakajima, T. (2022). Diagnosing Ovarian Cancer on MRI: A Preliminary Study Comparing Deep Learning and Radiologist Assessments. Cancers, 14(4), 1-12.
Bjerkan, J., Valderaune, V., & Olsen, R. M. (2021). Patient safety through nursing documentation: Barriers identified by healthcare professionals and students. Frontiers in Computer Science, 3, 1-11.
Chen, K., Xu, H., Lei, Y., Lio, P., Li, Y., Guo, H., & Ali Moni, M. (2021). Integration and interplay of machine learning and bioinformatics approach to identify genetic interaction related to ovarian cancer chemoresistance. Briefings in bioinformatics, 22(6), 1-11.
Ghoniem, R. M., Algarni, A. D., Refky, B., & Ewees, A. A. (2021). Multi-modal evolutionary deep learning model for ovarian cancer diagnosis. Symmetry, 13(4), 1-25.
Yue, Z., Sun, C., Chen, F., Zhang, Y., Xu, W., Shabbir, S., Zou, L., Lu, W., Wang, W., & Xie, Z. (2021). Machine learning-based LIBS spectrum analysis of human blood plasma allows ovarian cancer diagnosis. Biomedical optics express, 12(5), 2559-2574.
Zhang, Z., & Han, Y. (2020). Detection of ovarian tumors in obstetric ultrasound imaging using logistic regression classifier with an advanced machine learning approach. IEEE Access, 8, 44999-45008.
Gao, Y., Zeng, S., Xu, X., Li, H., Yao, S., Song, K., Li, X., Chen, L., Tang, J., & Xing, H. (2022). Deep learning-enabled pelvic ultrasound images for accurate diagnosis of ovarian cancer in China: a retrospective, multicentre, diagnostic study. The Lancet Digital Health, 4(3), 179-187.
Wang, R., Cai, Y., Lee, I. K., Hu, R., Purkayastha, S., Pan, I., Yi, T., Tran, T. M. L., Lu, S., & Liu, T. (2021). Evaluation of a convolutional neural network for ovarian tumor differentiation based on magnetic resonance imaging. European radiology, 31, 4960-4971.
Kasture, K. R., Shah, D. D., & Matte, P. N. (2021). A new deep learning method for automatic ovarian cancer prediction & subtype classification. Turkish Journal of Computer and Mathematics Education, 12(12), 1233-1242.
Kasture, K. R., Sayankar, B. B., & Matte, P. N. (2021). Multi-class Classification of Ovarian Cancer from Histopathological Images using Deep Learning-VGG-16. 2021 2nd Global Conference for Advancement in Technology (GCAT),
Hsu, S.-T., Su, Y.-J., Hung, C.-H., Chen, M.-J., Lu, C.-H., & Kuo, C.-E. (2022). Automatic ovarian tumors recognition system based on ensemble convolutional neural network with ultrasound imaging. BMC Medical Informatics and Decision Making, 22(298), 1-12.
Wang, Y., Zhang, H., Wang, T., Yao, L., Zhang, G., Liu, X., Yang, G., & Yuan, L. (2023). Deep learning for the ovarian lesion localization and discrimination between borderline and malignant ovarian tumors based on routine MR imaging. Scientific Reports, 13(2770), 1-10.
Li, Y., Lin, X., & Liu, J. (2021). An Improved Gray Wolf Optimization Algorithm to Solve Engineering Problems. Sustainability, 13(6), 1-32.
Zamani, H., Nadimi-Shahraki, M. H., & Gandomi, A. H. (2021). QANA: Quantum-based avian navigation optimizer algorithm. Engineering Applications of Artificial Intelligence, 104, 104314.
Guo, Z., Liu, G., & Jiang, F. (2025). Chinese Pangolin Optimizer: A novel bio-inspired metaheuristic for solving optimization problems. The Journal of Supercomputing, 81, 1-32.
Aydilek, I. B. (2018). A hybrid firefly and particle swarm optimization algorithm for computationally expensive numerical problems. Applied Soft Computing, 66, 232-249.
Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in engineering software, 95, 51-67.
Trojovská, E., Dehghani, M., & Trojovský, P. (2022). Zebra optimization algorithm: A new bio-inspired optimization algorithm for solving optimization algorithm. IEEE Access, 10, 49445-49473.
Fu, Y., Liu, D., Chen, J., & He, L. (2024). Secretary bird optimization algorithm: a new metaheuristic for solving global optimization problems. Artificial Intelligence Review, 57(123), 1-102.
Naruei, I., & Keynia, F. (2022). Wild horse optimizer: A new meta-heuristic algorithm for solving engineering optimization problems. Engineering with computers, 38, 3025-3056.
Amiri, M. H., Mehrabi Hashjin, N., Montazeri, M., Mirjalili, S., & Khodadadi, N. (2024). Hippopotamus optimization algorithm: a novel nature-inspired optimization algorithm. Scientific Reports, 14(5032 ), 1-50.
Faramarzi, A., Heidarinejad, M., Mirjalili, S., & Gandomi, A. H. (2020). Marine Predators Algorithm: A nature-inspired metaheuristic. Expert systems with applications, 152, 1-28.
Chaudhary, A., Kolhe, S., & Kamal, R. (2016). An improved random forest classifier for multi-class classification. Information Processing in Agriculture, 3(4), 215-222.
Breima, L. (2010). Random forests. Machine Learning, 45, 5-32.
Al Amien, J., Ab Ghani, H., Saleh, N. I. M., Ismanto, E., & Gunawan, R. (2023). Intrusion detection system for imbalance ratio class using weighted XGBoost classifier. TELKOMNIKA (Telecommunication Computing Electronics and Control), 21(5), 1102-1112.
Fan, J., Ma, X., Wu, L., Zhang, F., Yu, X., & Zeng, W. (2019). Light Gradient Boosting Machine: An efficient soft computing model for estimating daily reference evapotranspiration with local and external meteorological data. Agricultural water management, 225, 1-15.
Ibrahim, A. A., Ridwan, R. L., Muhammed, M. M., Abdulaziz, R. O., & Saheed, G. A. (2020). Comparison of the CatBoost classifier with other machine learning methods. International Journal of Advanced Computer Science and Applications, 11(11), 738-748.
Ying, L. (2015). Decision tree methods: applications for classification and prediction. Shanghai archives of psychiatry, 27(2), 130-135.
Zebari, D. A., Abrahim, A. R., Ibrahim, D. A., Othman, G. M., & Ahmed, F. Y. (2021). Analysis of dense descriptors in 3D face recognition. In 2021 IEEE 11th International Conference on System Engineering and Technology (ICSET) (pp. 171-176). IEEE.
Song, Y., Sa, J., Luo, Y., & Zhang, Z. (2024). A comprehensively improved local binary pattern framework for texture classification. Multimedia Tools and Applications, 84(20), 1-26.
Zebari, D. A., Sulaiman, D. M., Sadiq, S. S., Zebari, N. A., & Salih, M. S. (2022). Automated Detection of Covid-19 from X-ray Using SVM. In 2022 4th International Conference on Advanced Science and Engineering (ICOASE) (pp. 130-135). IEEE.
Gour, N., & Khanna, P. (2020). Automated glaucoma detection using GIST and pyramid histogram of oriented gradients (PHOG) descriptors. Pattern Recognition Letters, 137, 3-11.
Swapna, S., & Garapati, Y. (2025). Median Binary Pattern with Statistical model for feature extraction and Mobile DB-Net based brain tumor detection using MRI image. Expert systems with applications, 277, 127-201.
Banerjee, A., Das, N., & Santosh, K. (2022). Weber local descriptor for image analysis and recognition: a survey. The Visual Computer, 38(1), 321-343.
Dhal, P., & Azad, C. (2022). A comprehensive survey on feature selection in the various fields of machine learning. Applied intelligence, 52(4), 4543-4581.
Islam, M. R., Lima, A. A., Das, S. C., Mridha, M. F., Prodeep, A. R., & Watanobe, Y. (2022). A comprehensive survey on the process, methods, evaluation, and challenges of feature selection. IEEE Access, 10, 99595-99632.
Ewees, A. A., Ismail, F. H., Ghoniem, R. M., & Gaheen, M. A. (2022). Enhanced marine predators algorithm for solving global optimization and feature selection problems. Mathematics, 10(21), 1-21.
Chong, H. Y., Yap, H. J., Tan, S. C., Yap, K. S., & Wong, S. Y. (2021). Advances of metaheuristic algorithms in training neural networks for industrial applications. Soft Computing, 25, 11209-11233.
Alamoudi, A., Khan, I. U., Aslam, N., Alqahtani, N., Alsaif, H. S., Al Dandan, O., Al Gadeeb, M., & Al Bahrani, R. (2023). A deep learning fusion approach to diagnosis the polycystic ovary syndrome (PCOS). Applied Computational Intelligence and Soft Computing, 2023, 1-15.
Nazarudin, A. A., Zulkarnain, N., Mokri, S. S., Zaki, W. M. D. W., Hussain, A., Ahmad, M. F., & Nordin, I. N. A. M. (2023). Performance analysis of a novel hybrid segmentation method for polycystic ovarian syndrome monitoring. Diagnostics, 13(4), 1-18.
Chitra, P., Srilatha, K., Sumathi, M., Jayasudha, F. V., Bernatin, T., & Jagadeesh, M. (2023, March). Classification of ultrasound PCOS image using deep learning based hybrid models. In 2023 Second International Conference on Electronics and Renewable Systems (ICEARS) (pp. 1389–1394). IEEE.
Panicker, P. H., Shah, K., & Karamchandani, S. (2023). CNN based image descriptor for polycystic ovarian morphology from transvaginal ultrasound. In 2023 International Conference on Communication System, Computing and IT Applications (CSCITA) (pp. 148–152). IEEE.
Panicker, P. H., Shah, K., & Karamchandani, S. (2023). CNN based image descriptor for polycystic ovarian morphology from transvaginal ultrasound. In 2023 International Conference on Communication System, Computing and IT Applications (CSCITA) (pp. 148–152). IEEE.
Baweja, A. K., & Kanchana, M. (2023). Prediction of polycystic ovarian syndrome using machine learning techniques. In Machine Learning, Image Processing, Network Security and Data Sciences: Select Proceedings of 3rd International Conference on MIND 2021 (pp. 53–63). Springer Nature Singapore.
Bedi, P., Goyal, S., Rajawat, A. S., & Kumar, M. (2024). An integrated adaptive bilateral filter-based framework and attention residual U-net for detecting polycystic ovary syndrome. Decision Analytics Journal, 10, 1-10.
Inan, M. S. K., Ulfath, R. E., Alam, F. I., Bappee, F. K., & Hasan, R. (2021). Improved sampling and feature selection to support extreme gradient boosting for PCOS diagnosis. In 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC) (pp. 1046–1050). IEEE.
Tiwari, S., Kane, L., Koundal, D., Jain, A., Alhudhaif, A., Polat, K., Zaguia, A., Alenezi, F., & Althubiti, S. A. (2022). SPOSDS: A smart Polycystic Ovary Syndrome diagnostic system using machine learning. Expert systems with applications, 203, 117-132.
Hdaib, D., Almajali, N., Alquran, H., Mustafa, W. A., Al-Azzawi, W., & Alkhayyat, A. (2022, May). Detection of polycystic ovary syndrome (PCOS) using machine learning algorithms. In 2022 5th International Conference on Engineering Technology and Its Applications (IICETA) (pp. 532–536). IEEE.
Hosain, A. S., Mehedi, M. H. K., & Kabir, I. E. (2022). PcoNet: A convolutional neural network architecture to detect polycystic ovary syndrome (PCOS) from ovarian ultrasound images. In 2022 International Conference on Engineering and Emerging Technologies (ICEET) (pp. 1–6). IEEE.
Schwartz, D., Sawyer, T. W., Thurston, N., Barton, J., & Ditzler, G. (2022). Ovarian cancer detection using optical coherence tomography and convolutional neural networks. Neural computing and applications, 34, 8977-8987.
Sengupta, D., Ali, S. N., Bhattacharya, A., Mustafi, J., Mukhopadhyay, A., & Sengupta, K. (2022). A deep hybrid learning pipeline for accurate diagnosis of ovarian cancer based on nuclear morphology. PloS one, 19(12), 1-20.
Wadhwa, G., Jayanthi, N., & Mathur, M. (2021). A deep convolutional neural network approach for detecting malignancy of ovarian cancer using densenet model. Annals of the Romanian Society for Cell Biology, 25(2), 4449-4458.
Hasan, M. S. (2017). An application of pre-trained CNN for image classification. In 2017 20th International Conference of Computer and Information Technology (ICCIT) (pp. 1–6). IEEE.
Simon, M., Rodner, E., & Denzler, J. (2016). ImageNet pre-trained models with batch normalization. arXiv, 1-4.
Ali, H., Sharif, M., Yasmin, M., & Rehmani, M. H. (2022). A shallow extraction of texture features for classification of abnormal video endoscopy frames. Biomedical Signal Processing and Control, 77, 1-17.
Faust, O., Acharya, U. R., Meiburger, K. M., Molinari, F., Koh, J. E., Yeong, C. H., Kongmebhol, P., & Ng, K. H. (2018). Comparative assessment of texture features for the identification of cancer in ultrasound images: a review. Biocybernetics and Biomedical Engineering, 38(2), 275-296.
Liu, L., Lao, S., Fieguth, P. W., Guo, Y., Wang, X., & Pietikäinen, M. (2016). Median robust extended local binary pattern for texture classification. IEEE Transactions on Image Processing, 25(3), 1368-1381.
Lin, T. Y., Goyal, P., Girshick, R., He, K., & Dollár, P. (2017). Focal loss for dense object detection. In Proceedings of the IEEE International Conference on Computer Vision (pp. 2980–2988). IEEE.
Tian, X., Wu, D., Wang, R., & Cao, X. (2018). Focal text: An accurate text detection with focal loss. In 2018 25th IEEE International Conference on Image Processing (ICIP) (pp. 2984–2988). IEEE.
Nemoto, K., Hamaguchi, R., Imaizumi, T., & Hikosaka, S. (2018). Classification of rare building change using cnn with multi-class focal loss. IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain.
GitHub. (2025). cv516Buaa/MMOTU_DS2Net. https://github.com/cv516Buaa/MMOTU_DS2Net
Zhao, Q., Lyu, S., Bai, W., Cai, L., Liu, B., Cheng, G., Wu, M., Sang, X., Yang, M., & Chen, L. (2022). MMOTU: A multi-modality ovarian tumor ultrasound image dataset for unsupervised cross-domain semantic segmentation. arXiv, 1-18.
Le, V.-H., & Pham, T.-L. (2024). Ovarian Tumors Detection and Classification on Ultrasound Images Using One-stage Convolutional Neural Networks. Journal of Robotics and Control (JRC), 5(2), 561-581.
Rani, N. D., & Arrama, M. B. (2025). Novel Deep Learning-Based Framework for Multi-class Detection of Ovarian Tumors Using Ultrasound Imaging. Indian Journal of Gynecologic Oncology, 23(3), 1-19.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Qubahan Academic Journal

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.